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Mel-spectrogram Analysis to Identify Patterns in Musical
Gestures: a Deep Learning Approach

David Dalmazzo and Rafael Ramirez

Music and Machine Learning Lab
Music Technology Group
Department of Communication and Information Technology
Pompeu Fabra University,
Barcelona, Spain
david.cabrera@upf.edu, rafael.ramirezQupf.edu

Abstract. We present a machine learning approach to classify music gestures based on
motion capture data. In particular, we record professional violinists while performing eight
different bow-stroke techniques and apply deep learning to train classifiers to detect the type
of bow-stroke performed. We compare three different convolutional neural networks (CNNs)
architectures. Results show that the best architecture for the task is a hybrid CNN-LSTM
architecture achieving more than 97% accuracy for the eight-class classification problem.

Keywords: Mel-spectrogram - Deep Learning - Musical gestures - Convolutional Neural
Networks.

1 Introduction

Gestures understood as music performance techniques, have a direct consequence on sound qualities;
by only analysing the sound we should be able to extract enough information to determine if a
technical exercise was performed optimally. As an anatomical analogy, the human auditory cortex
encodes spectrotemporal modulations (spectrograms), defined in the literature as ‘temporal fine-
structure’, in the auditory nerve [11] which are then processed by a population of neurons located in
the central auditory cortex (A1) in the superior temporal gyrus [10]. Although the auditory neural
processing is still in the shadow, it is confirmed that a very precise system can discriminate temporal
dimensions, location or timber characteristics and it is modulated by an attentional drive, which
is formed by the contextual information framing its attentional-sound [12]. From this perspective,
we intend to research about Mel-spectrogram application implementing deep learning techniques,
to define sound ques, similar to an artificial attentional network to identify spoken-words, but in
this case, to model gestural performance goals in musical exercises.

Mel-spectrogram based models have been used in the Music Information Retrieval (MIR). This
field comprehends a variety of techniques and research topics. To name those that are more relevant
to the paper, we can mention music feature extraction, music similarity and music classification
(e.g. genre classification, auto-tagging) [3], [2]. In the field of music classification, we can find several
studies focused on genre classification, where two techniques are commonly utilised to extract in-
formation from audio signals with the help of Convolutional Neural Networks (CNN): a) waveforms
analysis, and b) spectrograms analysis. For instance, the Shazam system uses a constellation map
as an audio fingerprint of coordinates in a 2D chart made of frequency against time, created from
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2 Dalmazzo & Ramirez

spectrogram analysis of a database composed of 1.8M tracks. As a consequence, the system has
produced a second database of ‘fingerprinted’ files mapped with the audio database, being capable
of identifying, even with short segments of audio, the corespondent source [13]. Some common MIR
techniques found in the literature are based on filtering adaptation to extract temporal features
from spectrograms; in the same manner filters (square pooling) in the first neuronal layers are used
in computer vision to extract shapes, new approaches are implemented with long y-axis and a short
x-axis to extract temporal characteristics from the spectrogram images [9]. Another technique fo-
cusing using spectrograms consists of using convolutinal neural networks (CNNs) and convolutional
concatenated filters to potentiate the extraction of temporal features from waveforms [15] [8], [1],
7], 4, [14], (6]

2 Materials and Methods

We recorded a database of bow-stroke classical violin techniques of three experts and three high-
level students, while playing a G mayor scale (three octaves) covering the four strings of the violin.
The eight bow-stroke techniques the performers were instructed to perform comprised: Martelé,
Staccato, Detaché, Ricochet, Legato, Trémolo, Collé and Col legno. During the recording session,
the audio was captured using a Zoom H5 recorder using to Max_8 application, recording WAV
files with a sample rate of 44.100Hz/16bits. We have explored three convolutional neural network
architectures: 1D CNN (ConvlD), 2D CNN (Conv2D) and a hybrid CNN and LSTM network
(CNN_LSTM). To transform the audio signals to spectrograms we implemented the Librosa!
0.8.0 Python library [5]. Librosa is a package for music and audio analysis, suitable from rapid
prototyping and implementation in the music information retrieval system.

3 Results

After training three Recurrent Neural Networks architectures using the recorded data for classifying
the above bowing-techniques, we obtained the following classification accuracies:

— ConvlD Accuracy: 95.161% (sd +/-2.321)
— Conv2D Accuracy: 84.301% (sd +/-2.079)
— CNN_LSTM Accuracy: 97.473% (sd +/-2.012)

As shown in the tables 1, and 2, the highest accuracy is obtained with the CNN_LSTM. Nevertheless,
the simple CNN_Conv1D architecture also produced high accuracy for the task. The CNN_LSTM
architecture was tested with five filtering configurations (32,64,128,256,512) and the filter size of
512 reported the higher precision as shown in table 2.

4 Discussion

From the three CNN architectures explored the CNN_LSTM architecture obtained the highest
classification accuracy using spectrograms for violin bow-stroke gestural detection. Nevertheless,
the models proposed are not yet specialised to identify precise gestural executions as they are not
mapped as an encoder-decoder supervised learning model. We have to take into account that for a

! web: https://librosa.org/doc/latest /index.html
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Table 1: Classification Report ConvlD_CNN and Conv2D_CNN

class precision recall fl-score support :class precision recall fl-score support

""""""""""""""" .00 096 098 24 0 09 09 096 24

1 0.92 1.00 0.96 24 1 0.61 0.92 0.73 24

2 0.84 0.88 0.86 24 2 0.85 0.92 0.88 24

3 1.00 0.89 0.94 36 3 1.00 0.61 0.76 36

4 1.00 1.00 1.00 20 4 0.95 0.90 0.92 20

5 0.80 1.00 0.89 12 5 0.55 1.00 0.71 12

6 1.00 0.97 0.98 30 6 0.82 0.60 0.69 30
1.00 1.00 1.00 16 7 0.87 0.81 0.84 16

accuracy 0.95 18  ‘‘accuracy 0.81 186

macro avg 0.95 0.96 0.95 186 macro avg 0.82 0.84 0.81 186

weighted 0.96 0.95 0.95 186 weighted 0.85 0.81 0.81 186

avg avg

class precision recall fl-score support
ot e0 .00 .00 24
1 0.92 1.00 0.96 24

2 1.00 0.88 0.93 24

3 1.00 1.00 1.00 36

4 1.00 1.00 1.00 20

5 0.86 1.00 0.92 12

6 1.00 0.97 0.98 30

7 1.00 1.00 1.00 16
accuracy 098 186
macro avg 0.97 0.98 0.97 186
weighted avg 0.98 0.98 0.98 186

gesture-sound mapping, we still need much more data and also to develop further the architecture
proposed in this paper.

We observed that in the case of the CNN_LSTM architecture with different filtering setups.
some of the gestures were better recognised by a small filters and some others by bigger filters in
the first layers of the CNN. For instance, with a filter of size 512 Detaché was poorly recognised,
while using a filter of size 256 the same gesture is detected with high accuracy by the system. That
means that it would be advisable to implement a two or three-headed CNN filtering with custom
sizes to extract small timing characteristics and also extract timbral information that is very closely
related to the nature of the gesture.

The Conv2D_CNN architecture results in a lower accuracy. It support the conclusions expressed
in the literature that one-dimensional filters are better for mining temporal characteristics from
time-sequence audio data, as 2D filters need a more precise custom definition in sizes to match
timbral and temporal information. As future work, CNN architectures with custom 2D filters should
be tested and evaluated.

We have focused on the implementation of CNN_LSTM, however, a more precise filtering system

implementing a simple CNN with one-dimensional convolutional first layer, might be sufficient to
constitute a robust architecture to achieve the goals of estimating correctness of bow-stroke gestural
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executions. It also has to be noted that the Conv_IDCNN architecture is computationally less
expensive to train and the resulting model is faster.
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Abstract. Due to the variety of lengths and patterns of playing tech-
niques and the labeled data available are few, musical instrument playing
technique detection is challenging. In this work, we use two datasets of
Chinese musical instruments, compare the performance of dierent audio
features and neural network structures on this task. Besides, we make a
comparison between DL-based model and DSP-based model. Fully Con-
volutional Network achieves the highest accuracy 89.5% on the test set.
We additionally evaluate and visualize the performance of the proposed
method on several real-world studio music (produced by midi) and real-
world recording tracks.

1 Introduction

Playing technique is a crucial part of musical instruments performance. It con-
veys essential emotion and personal expression of both the composer and the
performer in music signals. The detection of playing techniques in music record-
ings is beneficial to the research in automatic music transcription, music infor-
mation retrieval, and performance analysis. For example, authors of [6] proposed
a transcription system for electronic guitar, which transcribes both the notes and
performance technique symbols.

However, the characteristic of playing techniques brings challenges to the de-
tection task. In the case of Erhu, a famous Chinese bowed-stringed instrument,
the playing techniques have the following characteristics: (1) the duration of
different techniques is on a wide range; (2) some techniques are similar to each
other when listening; (3) some playing techniques are combinations of other tech-
niques.

Prior work formalized playing technique detection as a multi-stage classifi-
cation task for segmented patterns of music recordings*[5,1,6], or a frame-level

4 first segmented, then classification
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binary classification task for a given technique[8,7]. Liang et al.[3] considered
playing techniques detection in the audio signal of musical performance as a
particular aspect of automatic music transcription. They have done in-depth
studies on piano sustain pedal detection and proposed valuable datasets and
frameworks to examine the existence of pedal.

In this work, we mainly studied the feasibility and performance of Deep
Learning models on this task. We made a comparison between some DL models
(such as RNN® and FCN, CNNS and FCN[4]") using different features (CQT
and Mel-spectrogram) as input. We further compared the performance between
the above DL-based models and DSP-based models[8,7] on this task. To evaluate
our approach, we created a new open dataset containing all playing techniques of
Erhu (ErhuPT)?® based on DCMI[2], then implement our models to the proposed
ErhuPT dataset and an existing dedicated dataset CBF|[8] of Chinese Bamboo
Flute. The experiment results on the above two datasets showed that Mel+FCN
model achieved the best performance, and deep learning based models performed
better on long-term techniques than other existing signal processing methods.

2 Datasets

Two datasets are used in this paper. One is created by ourselves, named ErhuPT,
the other is called CBF proposed by [8].

— ErhuPT dataset: This dataset is mainly about Erhu playing techniques.
It contains two sets of recordings on 11 techniques by two different players,
and several whole pieces of real-world music. Details can be found online.

— CBF dataset: The dataset proposed by [8] contains several playing tech-
niques of Chinese Bamboo Flute. It contains two types of recordings by ten
different players, named as isolated techniques and performed techniques(full
piece), respectively. Detailed information can be found online.

The sample rate of all the audios in the above datasets is 44.1kHz.

For data pre-processing, firstly, we named the individual playing technique
recordings as short clips. On both training and test set, we randomly generated
audio segments of 10 seconds long by concatenating the short clips, and we
named these generated audio segments as long segments. To ensure that the long
segments sound realistic, we made a milliseconds cross-fade in each boundary of
adjacent two short clips.

We also labeled the timestamp of playing techniques during the long segments
generation process. The format of the label consists of event tags recorded with
a frame length of 0.05 second. Due to the impossibility of playing multiple tech-
niques simultaneously on a solo instrument, the above operation is reasonable.

5 Recurrent Neural Network

8 Convolutional Neural Network

" Fully Convolutional Networks(FCN)
8 To be appeared online.
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3 Experiments

Because the lengths of some techniques are short(only 0.15-0.20 seconds, 3-4
frames), we decided not to implement post-processing for the output prediction
in our proposed model. We calculated the accuracy of one segment of these test
data by hamming distance.

3.1 Different network architectures with different features

To figure out what kind of network architectures and audio features are suit-
able for this task, we used three famous architectures (RNN, CNN & FCN[4])
in Deep Learning and two audio features (CQT & Mel-spectrogram) to experi-
ment. For brevity, detailed information about the experiments setting, network
architectures and training strategies can be found online.

First, we trained the models on 2 subsets of ErhuPT, called 4 classes (slide,
staccato, trill & others) and 11 classes (full dataset). In each experiment, we
generated 10s long segments using ErhuPT dataset or a subset of it for training
and test.

Comparison among different features: The results are shown in Table 1.
We used FCN as the network architecture, and Mel, CQT & Mel+CQT? as three
types of input for the model. The result of 11 classes experiments shows that
Mel-spectrogram performs slightly better than other features. Existing research
shows that Mel-filters can better adapt to the human auditory system, and CQT
can better extract pitch/F0 information. Because the timbre aspect of playing
techniques plays an important role, it is not difficult to understand this result.

Comparison among different architectures: We used Mel-spectrogram
as the input, then implemented 4 classes experiments on three models and 11
classes on CNN and FCN. The result shows that FCN performs better than
other models.

Further analysis and results on real-world music of the best model can be
found online.

3.2 Comparison between DL-based method and DSP-based method

In this part, we mainly focus on the comparison between DL-based method and
DSP-based method. We choose FCN+Mel trained on CBF dataset as the DL-
based experiment, and experiments in [8,7] by the scattering transform approach
as the DSP-based experiments.

These DSP-based experiments use scattering transform as the feature ex-
tractor, then implement a frame-level binary classification by Support Vector
Machine (SVM) for each technique. The proposed DL-based experiment uses
FCN to do a multi-classification directly. The DSP-based experiments train a
specific SVM for each technique, respectively. The advantage of this method is
that the models between different techniques do not interfere with each other.

9 They are in different channels of network input
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ST+SVMs FCN+Mel

4cl. 11 cl.
I = techniques|P(%) R(%) F(%) P(%) R(%) F(%)

n ‘\ n) 7N - [
E‘(‘Ql\i'il\l[(gll g};f L;_?I/(C FT 97.8 99.5 98.7 88.1 92.4 90.2
RNN4-Mel 19‘; e Tremolo  [67.6 414 50.7 95.2 88.4 91.7
&.N‘L(f RS Trill 80.8 76.3 823 90.6 98.0 94.1
FON+ QT : Vibrato  [75.1 64.7 69.3 92.1 829 87.2
FON+Mel+CQT Acciacatura [84.2 66.9 713 73.3 869 79.5
Portamento |70.0 51.1 58.6 83.9 86.7 85.3
Table 1. result of conditioned experiments Glissando  183.9 83.6 83.3 86.2 92.1 89.0

Table 5. Results of 2 models on CBFdataset. P: precision, R: recall, F: F-score.

Predicted
P
2 E z § § 2 2 ° Predicted
£ £ = g < 2 g — g = o
H s » 5 3§ 3 § 7 5 S g
< £ 2 £ B £ B B E o Ei g 2
detache .13 033 159 0.09 027 024 E 5 06l s 2 2 E 3
n 0.72 541 159 018 033 131 196 5 = 5 3% £ Z
harmonic JEEEH 015 0.67 104 025 068 049 287 E & & 5 £ & B
23 113 038 022 081 361 0.60 FT EZ3 08 07 21 22 1.6 02
percussive 029 080 0.08 45 12770 10.1 693 0.19 Tremolo 0.6 1.1 27 15 32 25
pizzicato 125 13 0 827 7.95 (3661 300 246 994 149 065 Trill 01 02 00 05 11 02
ricochet 045 1 0.4 704 607 683 JEEN 105 10 LI3 051 Vibrato 66 38 13 07 46 02
staccato 1.4 207 0.12 688 813 478 313 3381 847 207 097 S Accincatura 14 35 22 0% 24 22
tremolo  0.16 025 0.04 122 117 093 068 031 189 017 2 R g e E . 3
will  LI2 127 054 166 027 085 0.85 129 287 W8N 059 g Portamento 05 20 56 05 19 2.8
vibrato 133 101 054 601 0.1 036 020 043 098 197 JEEN Glissando 0.2 17 06 0.1 19 35 [E2A]
Table 3. Confusion matrix of FCN+Mel on ErhuPT Table 4. Confusion matrix of FCN+Mel on CBF Dataset

Fig. 1. Due to the limitation of space, the enlarged version can be found online.

However, the model may predict more than one technique in a given frame,
which is troublesome and ambiguous. Our multi-classification model FCN can
deal with the last problem. Nevertheless, it will be affected by the long-tailed
distribution, as we remarked above.

Table 5 shows the results of the comparison between the DL-based model and
the DSP-based model. The results further indicate that FCN performs better on
long-term and non-percussive techniques than the DSP-based model, but worse
on other techniques. This observation inspires us to find a combination of these
two approaches.

4 Conclusion

In this work, we focused on musical instrument playing technique detection.
We analyzed the characteristics of different features and different models on two
datasets of Erhu and Bamboo Flute for this task and made a comparison between
DL-based model and DSP-based model. The best model achieves 89.50% accu-
racy on CBF dataset and 87.31% accuracy on ErhuPT dataset. Furthermore, we
demonstrate the visualization of playing technique detection on real-world music,
and the highest accuracy is 44.50%. Our experiments inspire further combining
the different approaches.
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Abstract. Non-negative matrix factor deconvolution (NMFD) can be
used to decompose a drum solo recording into K time-varying spectral
templates (the constituent sounds) with corresponding activation func-
tions. Unfortunately, choosing the template length, an important hyper-
parameter, is hard: it must be long enough to capture drum hits with
a long decay, but when chosen too large, the algorithm often captures
multiple drum hits within the same template. We propose to detect the
emergence of such ‘double hits’ during optimization, and to replace them
with an exponentially decaying extrapolation of the preceding template
frames. Experiments demonstrate the effectiveness of this approach.

Keywords: Non-negative matrix factor deconvolution - Automated drum
transcription

1 Introduction

The non-negative matrix factor deconvolution (NMFD) algorithm [8] decom-
poses a spectrogram matrix X € RgOXT with N frequency bins and T time
frames into a dictionary of K time-varying spectral templates W®*) e Rgox L*,
and an activation matriz H € REXT. The spectrogram is modeled as the con-
volution of the templates with the activation matrix:
K L,
Xn,t ~ Xn,t = Z W,,E@Hk’t,T (1)
k=171=1
where Hj ¢, is zero when t < 7. W) and H are updated iteratively using
multiplicative updates in order to minimize a divergence measure £(X ,X ). In

this paper, we use the KL divergence, L, and the corresponding update rules
for W*) and H [7]:

N X, N
Lrp(X,X) =Y X,log = L Xt + X, (2)
n,t

n,t

Hk,tf‘r (Xn,t/Xn,t)

Zt Hk,t—T ’
ET Zn V[/T(Ll:c‘l2 (Xn7t+T/Xn,t+‘r)
>, 3, Wi '

W e i

Hy < Hpy
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The templates W) can be interpreted as short spectrograms of length L,
that model the constituent sounds of the mixture. Ideally, each W) would
capture an individual drum hit of a particular instrument, e.g. W(® captures a
single kick drum hit, W) captures a single snare drum hit and so on. The corre-
sponding activations Hj then describe where in the mixture these sounds occur.
NMFD has already been applied successfully for automated drum transcription
and drum separation tasks [L2/4U5J619]. These works only consider constrained
settings, though, e.g. only optimizing for H and keeping the dictionary W fixed.
We note the absence in literature of a successful application of NMFD where
both W and H are optimized jointly.

The template length L, is an important hyper-parameter in NMFD. Per-
cussive mixtures often contain some instrument(s) with a long decay, e.g. a kick
drum; therefore, L needs to be large enough to adequately capture a single drum
hit of these instruments. However, percussive mixtures also often contain hits
that follow each other in rapid succession, e.g. the hi-hats. In this case, NMFD
often captures multiple drum hits within one template, as has been noted before
in the context of drum mixture decomposition using NMFD [5]. This is prob-
lematic: the discovered templates then no longer contain single drum hits, or
they can even contain drum hits of multiple instruments, so that the resulting
activations no longer reflect the onsets of the individual instruments, making the
decomposition less interpretable and useful. Figure (b) illustrates this problem.

2 Detecting emerging double hits during optimization

We propose to solve the ‘double-hit’ problem by checking after each update of
W*) whether a second onset can be detected in the template. If this is the case,
then W) is modified by overwriting this second onset with an exponentially
decaying extension of the preceding template frames. This will initially lead to
a worse approximation of the spectrogram, as important information for the
decomposition was removed. However, the expected effect of this modification
is that, in the next update of the activations H, some activation value(s) will
increase to compensate for the removal of the secondary onset in the template;
eventually, after a few updates, each W) will ideally only contain a single drum
hit, and all onsets will be captured in Hy.

The adapted update procedure for W) is as follows:

1. Calculate the updated version of W% as in Eqn. .
2. Calculate the log-envelope a®)[7] of each updated template W (*):

i®r] =3 log (W +¢), (5)

a®[r] = a®[r] - min (a®[r]) (6)

T

3. Calculate Aa®[7] = a®[1 + 7,] — a®[r]. When Aa®[7] is large for some
7, then there is an onset at time 7 in the template.
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Fig. 1. Illlustration of the decomposition of a short drum loop: (a) ground-truth decom-
position; (b) decomposition with NMFD; (c¢) decomposition with the modified NMFD
algorithm. Columns: X, the spectrogram; H, the activations; WO the first template,
capturing the kick drum; w, capturing the hi-hats; w®, capturing the snare drum.

4. Set all)y = max (a®™[r]). Detect onsets in W*) by determining whether
there is an onset larger than some threshold 64y, Aa(k)[T] > (Oinr aEff;X), for
some T > Ty Only peaks that lie past the shift threshold 7y, are considered,
in order to not erroneously correct the first (and correct) hit in the template.

5. If there is a second onset in the template at Terr > Tinr, then all the frames
after this onset are replaced by an exponentially decaying extension of the
template frames preceding it:

W,(LkT) — W,(L]fmrm exp (—Y(T — Terr)) y T = Terr + - - L7+ (7)

In our experiments, we use the following settings for the hyper-parameters of
this procedure: 7, = 3, fnr = 0.05, Tenr = 10, v = 1, L, = 50, ¢ = 10718,
which were empirically found to lead to good results. The STFT spectrogram is
calculated with a hop size of 512, and the audio sampling rate is 44.1 kHz.

3 Case study: decomposing a drum loop

As an example, we consider the drum loop in Figure a)ﬂ It contains three
instruments: a kick drum, a snare drum and a hi-hat. The kick drum decays
over approximately 50 frames; hence, we set L, = 50. We note, however, that
the hi-hats occur in rapid succession, i.e. approximately every 25 frames.

! This drum loop is a 4 second extract of a solo drum recording from the ENST
dataset [3], “062_phrase_rock_simple_medium_sticks.wav”.
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When decomposed with the original NMFD algorithm, shown in Figure[I|(b),
the templates W) capture not the individual drum hits, but rather repeating
sub-sequences of drum hits. The activations consequently are very sparse and are
not informative to determine the onset locations of the individual instruments.

When decomposed with NMFD using the proposed modifications, the tem-
plates each capture only a single drum hit, as shown in Figure c). Note that
the extracted templates very much resemble their ground-truth counterpart, see
Figure a). The activations also match the ground-truth onsets quite well; for
the hi-hat, i.e. the second component, there is some discrepancy, as only every
other onset is clearly captured. The other activations are ‘absorbed’ into the
kick drum and snare drum components. This is a consequence of the fact that
NMFD cannot distinguish a single-instrument hit from such a consistent layering
of multiple instantaneous drum hits (i.e. in this example, each kick/snare drum
hit always coincides with a hi-hat hit); an additional mechanism to disentangle
such sounds is beyond the scope of this paper.

4 Evaluation on the ENST dataset

We evaluate our approach on all fast simple phrases from the ENST dataset [3].
We run the original NMFD algorithm and our adaptation on these extracts,
and quantify how many excess drum hits can be detected in each template by
counting the number of peaks in Aa®)[7], see Section We furthermore measure
the spectrogram reconstruction quality using the Mean Absolute Error between
X and X: MAE(X, X) = 5T Dot | Xt — Xn,t|-

For each decomposed mixture, the MAE for the decomposition with the
original algorithm and the MAE for the adapted version are nearly identical;
furthermore, all spectrograms are approximated well (mean MAE 5.6 - 10~° for
both the original and the adapted algorithm, stdev. 3.0 - 107° and 3.1 - 1075
resp.). The average number of excess peaks detected in Aa®)[r] is 2.2 (stdev.
1.0) for default NMFD, and 0 for the adapted procedurdﬂ Visual inspectiorﬁ of
the results shows that in the decompositions with unmodified NMFD, double
hits are often present, while these are removed with the proposed procedure.

5 Conclusion

We conclude that the proposed adaptation maintains the same spectrogram
reconstruction quality, with the added advantage that NMFD now captures only
one drum hit per template. This allows to choose the template length long enough
to fully capture drum hits with a long decay, while maintaining a clear and
interpretable decomposition even in the presence of rapid successive drum hits.

2 Which is an expected result, of course, as we report on the metric that is used in
the adapted algorithm to detect double hits in the templates.

3 See the accompanying website for examples: https://users.ugent.be/~levdveir/
2020MML
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Abstract. This paper presents a machine learning approach for model-
ing expressive cello performances by a number of famous musicians. One
hundred and and eight recordings of Bach’ Suite No.1 and corresponding
music scores were collected. Recordings were automatically aligned us-
ing Dynamic Time Warping algorithm based on chroma features. Several
machine learning algorithms were applied to model the timing and dy-
namics expressive deviations introduced by the musicians. Performance
of applied algorithms are discussed; results show that, among the algo-
rithms considered, Random Forest produces the most accurate model for
both timing and dynamics expressive deviations.

Keywords: Expressive Performance - automatic transcription - Ma-
chine Learning

1 Introduction

Expressive music performance refers to the deviations a professional musicians
introduces when playing a score, such as timing, dynamics, tempo and articu-
lation alterations, in order to communicate a notated piece. Such musical vari-
ations are described as performance actions. The research of expressive music
performance aims to identify and quantify key aspects of performance actions
that shapes expressiveness introduced in musical performance.

Unlike many other music genres, western classical musicians perform a piece
strictly according to its original composition without changing any melody con-
tent. Here we model variations not in melody but in timing and dynamics using
data-driven approaches.

Keyboard instruments such as piano have been the most studied instrument
in the field of expressive music performance [1][2][3], partially due to their fre-
quent appearance along the classical music history and high availability of large
datasets for relevant research. There are also a number of works focused on ex-
pressive performance of wind instruments. For instance, Ramirez et al. [5] pre-
sented a genetic rule-based model for jazz saxophone, and Barthet et al. studied
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timbre, timing and dynamics in clarinet performance [6] [7]. String instruments
have also received some attention over the past years. Giraldo et al. [8] pre-
sented a convincing work modeling ornamentation in jazz guitar, and Ortega et
al. highlighted Phrase-Level modeling in violin performance [9].

To the best of our knowledge, there are only a few works focused on cello.
Igarashi et al. [11] extracted rules of respiration using sensors to measure respi-
ration in cello performance. Hong [10] worked on re-examination of the motor
process between expressive timing and dynamics proposed by Todd [4]. How-
ever, none of them focused on the topic of expressive performance modeling.
Thus, this work is motivated to model the deviation in expressive performances
of classical music compositions for cello, particularly focuses on the timing and
dynamics aspects.

2 Methodology

A dataset containing 108 recordings of Bach’s Suite No.l in G Major (BWV
1007) was collected, each of them performed by a different cellist, in WAV format.
The symbolic notation of Bach’s Suite No.1 in G Major is obtained in MusicXML
format.

Chromagram features were extracted from the STFT spectrogram of the
recordings, using Librosa library[12]. The Dynamic Time Warping algorithm was
applied to find the optimal path by calculating the Euclidean distance according
to obtained chromagrams.

A note segmentation algorithm was developed to segment notes according
to detected chroma changes. Small peaks were avoided by setting the minimum
threshold of note length to the length of a demisemiquaver.

A set of musical informative descriptors were extracted to depict the charac-
teristics of musical notes, which are presented in Table 1.

Table 1. Neighbour descriptors for individual musical notes

Descriptor Units Range
Pitch Semitones [1,127]
Chroma Semitones [0, 11]
Onset Frames [0, +o0]
Previous onset Frames [0, +00]
Next onset Frames [0, +00]
Previous inter-onset distance |Frames [0, +o0]
Next inter-onset distance Frames [0, +00]
Previous pitch interval Semitones [—60, 60]
Next pitch interval Semitones [—60, 60]
Measure Bars [0, +00]
Beat Beat [1,4]

Performance actions were calculated for each note in the recordings. The
inter-onset interval(IOI) ratio was measured as deviations in timing, which rep-
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resents the ratio of inter-onset interval of a note to the inter-onset interval of
its corresponding note in the original notation. In the context of this paper, the
dynamics of a piece is defined as the variation in loudness between musical notes.
Thus, the root-mean-squared energy in cello performance was measured.

The IOI ratio and RMS energy were further categorized into 3 classes. When
the IOI of note 4 in performance is less than 90% of the IOI of note ¢ in its
notation, it is recognised as a shorter note. When the IOI ratio exceeds 110%, the
note is recognised as a longer note. Otherwise, it is considered as approximately
equal.

The averages of RMS energy within all performances were calculated indi-
vidually. If the RMS energy of note 7 is less than 80% of the average energy
of the piece, it is defined as a softer note. If it exceeds 120% of the average
energy, it is considered as a louder note. Otherwise, it falls into the category of
approximately equal.

A classification experiment was conducted, using Support Vector Machine(with
a linear kernel), K-nearest Neighbour(k=1), and Random Forest algorithms. Zero
Rule classifier was also applied as baseline to compare with the other algorithms.

A selection of classification models trained by the best performed machine
learning algorithm were used to compare with other performances, in order to
obtain information on possible correlations between artists from the classification
results.

3 Results
Table 2. Classification results
Algorithm CCI (RMS Energy)|CCI (IOI Ratio)
Zero Rule 42.21% 51.83%
Random Forest 60.30% 57.25%
Support Vector Machine 48.23% 53.29%
k-Nearest Neighbours 51.77% 51.51%

Table 2 presents the arithmetic mean of the Corrected Classified Instances
results from the classification of 84 aligned performances, predicting the cate-
gories of RMS energy and IOl ratio. The obtained models were evaluated with
10-fold cross validation.

Figure 1 and Figure 2 presented correlation matrices on RMS energy and 101
ratio between 8 selected cello performances, based on the classification results
using Random Forest algorithm. The correlation coefficients are in the range of [-
100, 100]. A correlation coefficient between musician A and musician B presents
the difference between the result of training Random Forest model of perfor-
mance A to predict the classes in performance B and the baseline prediction
result of performance A. The negative coefficients were adjusted to 0, suggesting
that no potential correlation was found between two artists.
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4 Discussion

A high correlation coefficient between two artists shown in Figure 1 or Figure 2
may suggest that similar techniques were adopted when modulating timing or
dynamics in their performances. For instance, the author could conjecture that
there is a strong connection between the performance of Yo-Yo Ma and Dim-
itry Markevitch, on both timing and dynamics aspects. On the contrary, Anner
Bylsma’s performance shows little connections with Dimitry Markevitch’s per-
formance. However, such speculation derived from computational results may
not be true in the musical perspective, it would require experts such as musicol-
ogists to examine.

Table 2 shows that Random Forest, Support Vector Machine and k-Nearest
Neighbours all achieved better results than the baseline on the task of dynamics
prediction, indicating that all models were able to predict categories of RMS
energy in cello performances. As for the results from the prediction on timing,
it could be observed that Random Forest reached the highest CCI results, and
k-Nearest Neighbours(k=1) failed to give meaningful predictions on IOI ratio
categories.

Generally, all models showed better capability on the prediction of dynam-
ics than timing categorized labels. The best performed algorithm was Random
Forest, its Correctly Classified Instances reached 60.30% and 57.25% in clas-
sifying timing and dynamics, which were comparably better than the baseline
performances, showing a strong capability on relevant tasks.

The Support Vector Machine with linear kernel was applied in previous ex-
periments. Such a model could be too simplistic in terms of capturing the ex-
pressiveness in cello performances, since it was not a linear problem. It could be
interesting to see the results from the experiments using SVM with higher-degree
polynomial kernels which allow more flexible decision boundaries, to discover if
the changes in settings could improve the prediction accuracy.
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As for the undesired performance of k-Nearest Neighbours(k=1), one of the
main reasons could be overfitting. Setting k to a higher number when using
k-NN could possibly perform better on modeling the timing and dynamics in
expressive performances.

The proposed system may also be improved by adding a feature selection
process, since it is still not clear which features are more responsible for generat-
ing such results. Filtering out the irrelevant features could reduce the potential
of overfitting.

Lastly, a larger dataset would be desirable, especially when the paper tries
to address its research questions with machine learning approaches. It is also
worth noting that the training data itself was not completely reliable. The audio-
symbolic alignment of cello performances was automatically done by the algo-
rithm, and the evaluation method was manually checked on around 10% of the
data combined with rough estimates based on plots. It is very likely that there
exists cases in the training data that some notes are wrongly aligned. Hence,
a systematic and detailed evaluation of the alignment could lead to a better
accuracy of modeling.
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Abstract. Deep neural networks (DNNs) are successfully applied in a
wide variety of music information retrieval (MIR) tasks but their predic-
tions are usually not interpretable. We propose audioLIMFE, a method
based on Local Interpretable Model-agnostic Explanations (LIME), ex-
tended by a musical definition of locality. The perturbations used in
LIME are created by switching on/off components extracted by source
separation which makes our explanations listenable. We validate audi-
oLIME on two different music tagging systems and show that it produces
sensible explanations in situations where a competing method cannot.

1 Introduction

Deep neural networks (DNNs) are used in a wide variety of music information
retrieval (MIR) tasks. While they generally achieve great results according to
standard metrics, it is hard to interpret how or why they determine their output.
This can lead to situations where a network does not learn what its designers
intend. One goal of the field of interpretable machine learning is to provide tools
for practitioners that push towards making the decisions of opaque models un-
derstandable. The field of MIR has many stakeholders—from individual musicians
to entire corporations—all of which must be able to trust DNN systems.

A promising approach to this problem is Local Interpretable Model-agnostic
Explanations (LIME) [6], which produces explanations of predictions from an
arbitrary model post-hoc by perturbing interpretable components around an in-
put example and fitting a small, surrogate model to explain the original model’s
prediction. Previous attempts at adopting LIME for MIR, tasks have used rect-
angular regions of a spectrogram for explanations [5]. This ignores two defining
characteristics of audio data: 1) the lack of occlusion of overlapping sounds and,
2) all parts of a single sound might not be contiguous on a spectrogram.

In this work, we introduce audioLIME, an extension of LIME that preserves
fundamental aspects of audio so explanations are listenable. To achieve this we
propose a new notion of “locality” based on estimates from source separation
algorithms. We evaluate our method on music tagging systems by feeding the
explanation back into the tagger and seeing if the prediction changes. Using
this technique, we show that our method is able to explain predictions from
a waveform-based music tagger, which previous methods cannot do. We also
provide illustrative examples of listenable explanations from our system.
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Fig. 1: audioLIME closely follows the general LIME pipeline. The key is the use
of source estimates (blue box). A source separation algorithm decomposes input
audio into d’ = C X 7 interpretable components (C' sources, T time segments).

2 audioLIME

audioLIME is based on the LIME [6] framework and extends its definition of
locality for musical data by defining a new way of deriving an interpretable
representation. For an input value = to an arbitrary, black-box model f, LIME
first defines a set of d’ interpretable features that can be turned on and off,
x' € {0, l}d/. These features are perturbed and represented as a set of binary
vectors z], that an interpretable, surrogate model trains on. This surrogate model
matches the performance of the black-box model around x and is able to reveal
which of its interpretable features the black-box model relies on.

The key insight of audioLIME is that interpretability with respect to au-
dio data should really mean listenability. Whereas previous approaches applied
techniques from the task of image segmentation to spectrograms, we propose
using source separation estimates as interpretable representations. This gives
audioLIME the ability to train on interpretable and listenable features. *

The single-channel source separation problem is formulated as estimating a
set of C' sources, S1, ..., S., when only given access to the mixture M from which
the sources are constituents. We note that this definition, as well as audioLIME,
is agnostic to the input representation (e.g., waveform, spectrogram, etc) of
the audio. We use these C estimated sources of an input audio as our inter-
pretable components (e.g. {piano, drums, vocals, bass}). Mapping 2’ € {0,1}¢
to z (the input audio) is performed by mixing all present sources. For example
2/ ={0,1,0,1} results in a mixture only containing estimates of drums and bass.
The relation of this approach to the notion of locality as used in LIME lies in
the fact that samples perturbed in this way will in general still be perceptually
similar (i.e., recognized by a human as referring to the same audio piece). This
system is shown in Figure 1. In addition to source separation, we also segment
the audio into 7 temporal segments, resulting in C' X 7 interpretable components.

4 Python package available at: https://github.com/CPJKU /audioLIME
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Fig. 2: Percentage of explanations that produced the same tag as the original
input using k interpretable components for two music tagging systems. audi-
oLIME (blue) produces better explanations than SLIME [5] (green) and the
baseline (red).

3 Experiments

We analyze two music tagging models [7]: FCN [2], which inputs a 29 second
spectrogram, and SampleCNN [4], which inputs a 3.69 second waveform. Both
models were trained on the MillionSongDatatset (MSD) [1]. The LIME expla-
nation model used is a linear regression model trained with 12 regularization on
214 samples. We use Spleeter [3] as the source separation system.

Quantitative Results To verify that the explanations truly explain the model’s
behaviour we perform a simple experiment. If the explanation explains the
model’s behaviour we expect the tagger to be able to make the same prediction
when only passing the top k selected components, and a different prediction
otherwise.®

We randomly picked 100 examples from the MSD test set, 20 for each of the
5 most common tags (rock, pop, alternative, indie, electronic). For each example
we create several explanations (3/song for FCN, 16/song for SampleCNN) for
the top predicted tag. We compare two explanation systems, using the the top
k components in each explanation from either audioLIME or SLIME [5]. As a
baseline, we compare the prediction each tagger makes on k randomly selected
components where audioLIME surrogate models have a positive linear weight.

Figure 2 shows that even when using only a fraction of the components, the
tagger makes the same prediction more often with audioLIME than with SLIME
or the baseline. Importantly, because audioLIME’s explanations emphasize lis-
tenability, they are invariant to the input audio representation of the model,
and thus it is able to provide better explanations than SLIME, which does not
have the same flexibility. This indicates there is a whole class of waveform-based
models that SLIME is unsuited for, but audioLIME still works well.

® Experiment code: https://github.com/expectopatronum/mml2020-experiments/
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Qualitative Results Because the explanations audioLIME makes are source es-
timates, it is possible to listen to and make sense of them. To illustrate this,
we selected two examples of explanations of a prediction made by FCN. In the
first example, FCN predicted the tag “female vocalist” and, indeed, the top 3
selected audioLIME components are the separated vocals with a female singer.
In the second case, FCN predicted the tag “rock”, and in the top audioLIME
components we can hear a driving drumset and a distorted guitar, both of which
are associated with rock music. In these cases, we can be confident that our mu-
sic tagging network has learned the correct concepts for these tags, and thus
increases our trust in the black-box FCN model.

4 Conclusion

In this work we presented audioLIME, a system that uses source separation to
produce listenable explanations. We demonstrated an experiment that showed
how audioLIME can produce explanations that create trustworthy predictions
from music tagging systems that use waveforms or spectrograms as input. We
also showed two illustrative examples of explanations from audioLIME. One of
the shortcomings of audioLIME is its dependency on a source separation system,
which only works with a limited number of source types and may introduce
artifacts. However, we note that audioLIME is agnostic to the source separation
system, and thus audioLIME is compatible with future work in that space.
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Abstract. We explore how much can be learned from noisy labels in au-
dio music tagging. Our experiments show that carefully annotated labels
result in highest figures of merit, but even high amounts of noisy labels
contain enough information for successful learning. Artificial corruption
of curated data allows us to quantize this contribution of noisy labels.

Keywords: music tagging - label noise - convolutional neural networks

1 Introduction

The necessity of annotated data for supervised learning often contrasts with the
cost of obtaining reliable ground-truth in a manual fashion. Automated meth-
ods, on the other hand, simplify the annotation process and result in greater
quantities of data with possibly noisy labels, which is why multiple approaches
that investigate learning from noisy labels have been proposed [4-7,11,12]. In
the DCASE2019 Challenge “Audio tagging with noisy labels and minimal su-
pervision”, the question was raised whether noisy labels can also be useful when
training a system to perform audio tagging [1]. This work builds upon a sub-
mission to the DCASE2019 Challenge [8] and prior work [9], but with a focus
particularly on audio samples with musical labels. We investigate the impact of
training a music tagger solely on noisy labels, and find that even for a poten-
tially high level of noise we clearly outperform a random baseline at a respectable
performance level.

2 Data

We use the musical subset of the data provided for Task 2 of the DCASE2019
Challenge [1]. More precisely, out of the 80 classes in the original setup, our
experiments are restricted to samples with one or several out of 12 different
classes, containing musical instruments and male/female singing. In total, 3,967
training audio clips remain of which roughly 20% (825) are curated, and 80%
(3,142) have noisy labels. In addition we reserve 712 audio clips with curated
labels for testing. Curated audio clips have been carefully manually annotated [3],
whereas noisy labels are the result of automated heuristics [1]. As annotations

* This work is supported by the Austrian National Science Foundation (FWF P31988).
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are only available at clip-level without time stamps, we speak of weak labels.
The average number of labels per curated training clip is 1.03, for curated test
clips it is 1.06 and for noisy clips 1.15.

3 Methods

We use a Convolutional Neural Network (CNN) with eight convolutional and
three average-pooling layers as proposed in [8]. The inputs of the CNN are 96-
bin Mel-spectrograms, transformed to decibel scale. For computing the spectro-
grams, we use a Fast-Fourier Transform (FFT) size of 2048, a hop-size of 512
and a minimum frequency of 40 Hertz (Hz). Prior to feature computation, raw
audio is resampled to 16 kHz. Due to improved results in preliminary experi-
ments, spectrograms are not normalised before being fed into the CNN. In the
learning procedure, we use an Adam optimizer with an initial learning rate of
0.001. After 80 epochs, the learning rate is reduced by a factor of 10, and train-
ing is continued for 20 more epochs. Batch normalisation and drop-out are used
against overfitting. For training, we use one random 3 second snippet per clip;
for testing, on the other hand, the full audio is used. In case the raw audio is too
short, i.e. shorter than 3 seconds for training samples, circular padding is used.

4 Results

Task 2 of the DCASE2019 Challenge was to maximise the performance of an
audio tagging system on weakly multi-labelled data by exploiting both curated
and noisy labels. In contrast to this, we focus on the impact these two types of
labels have individually. Particularly, we take a closer look at the contribution
of noisy labels in the task of music tagging. Before evaluating the performance
of our system on different training data, we tune hyper-parameters (cf. section
3) on a separate curated validation set. After this, we train several models; first
we use training data with curated labels only, and secondly with noisy labels
only. Furthermore, we compare their performance with a random baseline and a
variation of the model with intentionally corrupted labels.

To measure the performance of the tagging system, we use the mean average
precision (MAP) and the mean area under ROC curves (MAUC) (cf. [10]). We
repeat our experiments 5 times for different random CNN initializations, and
show mean and standard deviation of MAP and MAUC on the test set over all
runs in Table 1. Additionally, we perform paired sample t-tests to determine the
significance of different performances. In what follows, differences are denoted
as significant whenever |t| > t(gg ap—4) = 4.604.

The first two lines in Table 1 show the performance of our CNN trained on
either data with curated labels only, or noisy labels only. Lines 3 and 4 relate to
a random baseline and a corrupted version of the curated training set.

More precisely, for line 3 and 4 in Table 1 we train the model on curated data
once more, but with two different modifications to the curated labels. First, we
create a random baseline with an intact label distribution by shuffling the labels
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Training Data MAP MAUC

Curated Labels 0.767 £ 0.005 0.913 4+ 0.004
Noisy Labels 0.665 £+ 0.013 0.846 + 0.010
Random Labels 0.265 + 0.006 0.502 + 0.007

Corrupted Labels (r=70 %) 0.638 + 0.019 0.852 + 0.009

Table 1. Mean + std. deviation over 5 runs of models with different training data.

of the training data. Furthermore, we estimate the unknown level of noise present
in the noisy dataset by performing the second modification in line 4, for which
we intentionally corrupt a certain percentage of curated labels until we reach a
similar performance as in line 2. This is done by replacing one single random tag
by a random but differing new tag for 7% of curated training data, regardless of
the original number of tags for a particular clip. In other words, all clips remain
with the same number of tags as before, but with exactly one wrong tag. Note
here that due to the low average number of tags per clip (cf. section 2), the
resulting level of noise will be closely related to the r value.

Training our CNN with curated audio clips results in a mean performance of
0.767 MAP and 0.913 MAUC as shown in Table 1. This is, for both metrics, a
significant difference to the random baseline and to our model trained on data
with noisy labels only. Similarly, the difference between the model trained solely
on noisy labels (with an average MAP of 0.665 and MAUC of 0.846) and our
baseline is statistically significant. If we decrease the number of training samples
with noisy labels to correspond to the lower amount of 825 curated training
samples, the MAP and MAUC decrease to 0.587 + 0.012 and 0.795 + 0.016,
respectively (not shown in Table 1). This benefit of using large quantities of
data with noisy labels is in line with previous results on comparable data [2].

For the last line in Table 1, we show the result of training on data with a noise
level of r = 70%; this comes close to the performance of training on the actual
noisy dataset (not a statistically significant difference). Starting with r = 0%
and increasing this factor with a step-size of 5%, the MAP and MAUC show
the first significant decrease when reaching a level of 50% noise. At this point,
the average MAP (MAUC) is reduced from 0.767 (0.913) to 0.736 (0.903) (not
shown in Table 1). Training the CNN on corrupted labels only, i.e. r = 100%,
decreases the two metrics to on average 0.206 and 0.388 respectively, which for
the MAUC is a significant difference compared to the random baseline.

5 Discussion and Conclusion

In conclusion, we see that even though training a music tagger on a set of curated
audio samples leads to the best performance, a model trained on very noisy labels
still outperforms a random baseline significantly, with figures of merit actually
much closer to the carefully curated scenario. This is particularly interesting as
noisy and curated clips have the same set of classes, but originate from different
sources [1]. Being based on Freesound (www.freesound.org) content, curated
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audio files often contain isolated sound samples of a class, while noisy files tend
to be of a more composite nature, as they consist of Flickr video soundtracks.

To explore the unknown level of noise in the noisy scenario provided for the
DCASE2019 challenge [1], we performed additional experiments in which we
trained on curated data with intentionally corrupted labels of a certain percent-
age (cf. [10]). Introducing this controlled amount of noise suggests that the noisy
dataset we tried to learn from possibly contains a relatively high amount of 70%
wrong labels, although we do not yet have an approximation of how the domain
mismatch influences the differences in performance of curated and noisy training
data. Nevertheless we were able to show that a weak multi-label audio-tagger
trained solely on noisy labels can not only perform significantly better than a
random baseline but at a respectable performance level, even in the case of a
domain mismatch and a potential high level of noise.
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Abstract. Genres are one of the most commonly used labels to cat-
egorise different styles of music. However, no universal definition of a
particular genre exists and as such, boundaries between genres can be
subjective. In this paper, a multimodal approach within a geometric deep
learning setting is explored, using information at an artist level in order
to link tracks and establish clearer genre boundaries. Experiments on
the MSD-I dataset showed significant improvement when using multi-
modal graph-based models over methods based on convolutional neural
networks alone. The use of domain knowledge also showed noticeable
improvement when compared to a purely data-driven approach.

Keywords: Genre Classification - Geometric Deep Learning - Multi-
modal Fusion.

1 Introduction

In recent years we have seen rapid growth in the use of digital streaming plat-
forms, with large databases of music being made available online. Digital stream-
ing accounted for 58.6% [4] of the revenue generated by the music industry as
a whole in 2019, led by streaming services such as Spotify and Apple Music.
With this growth it no longer is feasible to manually tag each track with the
appropriate metadata and, as a result, research into automated tagging methods
is increasing in popularity.

A wide range of work exists in the field of music genre classification [11],
with most current machine learning approaches attempting to identify underly-
ing characteristics of audio tracks and utilising these in order to classify songs
into appropriate genres. A multimodal approach is suggested in [9] where images
and text related to a song, as well as spectrograms of audio samples, are used in
a deep learning framework for single-label and multi-label genre classification ex-
periments. However, ignoring potential relationships that can be drawn between
tracks of the same, or similar, genre(s) could detract from the quality of classifica-
tion. Additionally, purely using song level features in a single-label classification
task can lead to inconsistencies due to subjective genre label boundaries, with
songs potentially overlapping different genres [7].
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This paper proposes the use of artist level similarities to form connections
between individual songs, allowing song-level features together with relationships
between them to be represented in a non-Euclidean form, namely graphs, for
use in a geometric deep learning framework [1]. It is thought that since artists
generally identify with small numbers of genres, the use of artist level similarities
may help better capture relationships between songs hence allowing for improved
performance in the genre classification task. We shall also consider the effect
of using features from multiple modes [10, 8], following the feature extraction
pipeline set in [9].

2 Methodology

2.1 Feature extraction using Convolutional Neural Networks

A baseline is constructed by extracting and classifying features from both audio
and visual modalities, by use of convolutional neural networks (CNNs) [2,3].
Spectrogram representations of the song and the album cover associated with
each song form the input to the audio and visual models respectively. The fea-
tures derived from both modes are embedded in a multimodal space [9], giving
rise to feature vectors from a further two modes (mm-audio and mm-visual).
Combinations of features from these four modes are used to assess the effects of
a multimodal approach. The CNN architectures follow that set out in [9]. Train-
ing occurs with Adam as our optimiser and categorical cross entropy as our loss
function across all single modal architectures. The visual network utilises the
Resnet-101 network with model parameters initialised with those learned in the
training of ImageNet. A learning rate of 1 x 10™% is used with mini batches of
50 samples over 90 epochs with early stopping. The audio network consists of 3
convolutional layers with each layer having 64,128 and 256 filters respectively.
Max pooling is used after each layer, as well as a dropout of 0.5. Mini batches
of 32 are used over 100 epochs with early stopping.

2.2 Geometric Deep Learning Approach

A graph based around each mode is formed with nodes representing individual
songs and having a graph signal consisting of song-level feature representations
from the respective mode, extracted by use of CNNs as described in Section 2.1.
An edge between two songs in each graph shall represent the similarity between
the artists of said tracks. Each graph is used to train a distinct graph convolu-
tional network (GCN) [6], before the outputs from each graph are combined for
classification. Artist similarities can be formed using two distinct methodologies:

(i) GCN: AGF Extracting Artist Group Factor (AGF) vectors for each artist
[5], from which the cosine similarity between two AGF vectors defines the artist
similarity between said artists. The similarity value is binarised by means of a
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threshold. AGF vectors are extracted by use of k-means clustering and Latent
Dirichlet Allocation with K clusters and R latent groups respectively. The audio,
visual,mm-audio and mm-visual configurations that will be used are K = 200,
200, 500, 500 and R = 40, 60, 40, 60 respectively. A threshold value of 1.0 is
found to give optimal performance.

(ii1) GCN: Spotify Using the Spotify API to identify similar artists based on

Spotify users’ listening history, in which a similarity value of 1 is given between
two related artists.

Table 1. Hyperparameter configuration of the GCN for each mode and each method

Hyperparameter audio visual mm-audio mm-visual
G Gy @ @ G G (3 ()
d 0.70 0.40 0.60 0.75 070 045 045 0.40

h 520 20 120 120 1220 620 1120 20

Ir (x107%) 518 131 242 160 359 275 103 1.96

Four different GCNs, one for each mode, shall be trained with each GCN
consisting of two convolutional layers followed by a fully connected layer. The
outputs from the convolutional layer of each of the four networks shall be com-
bined in various ways to compare single and multimodal performance. Table
1 shows the hyperparameter configuration found through optimisation for each
network with d, h and Ir being the dropout, hidden layer size and initial learning
rate respectively.

3 Experiments

A subset of the Million Song Dataset (MSD), the MSD-I dataset [9], which
includes a total of 30,713 tracks spanning 15 unique genres is used. Each track
has an associated album cover as well as a single genre label. The dataset contains
a total of 9048 artists and 16,753 albums, yielding an average of 3.4 songs per
artist and 1.8 songs per album. The dataset split is set to be 70% for training,
15% for validation and 15% for training.

Table 2 shows that, within our single-modal baseline CNN models, visual
modes (models 2 and 4) underperform compared to their audio counterparts
(models 1 and 3). The inclusion of data from multiple modes betters perfor-
mance, with the combination of mm-audio and mm-visual giving the highest F1
score. A similar pattern is seen in both GCN based models, with visual modes
once again achieving the lowest scores. However, GCN based methods are seen
to significantly improve on performance when compared to our baseline CNN
model, with the inclusion of all four modalities giving the highest F'1 score. The
use of domain knowledge (GCN: Spotify) shows improvement when compared to
a purely data-driven approach (GCN: AGF) across all combinations of modali-
ties.
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Table 2. Macro F1 scores for the classification task of a combination of modes across
all three methods.

Model Mode(s) Baseline (CNN) GCN: AGF GCN: Spotify
1. Audio 0.346 0.498 0.513
2. Visual 0.249 0.279 0.341
3. mm-audio 0.347 0.528 0.615
4. mm-visual 0.246 0.235 0.353
5. Audio + mm-audio 0.349 0.676 0.761
6. Visual + mm-visual 0.241 0.374 0.533
7. Audio 4 Visual 0.405 0.597 0.648
8. mm-audio + mm-visual 0.424 0.521 0.642
9. All 0.419 0.744 0.788
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Abstract. This paper presents a method for enhancing music audio
onset detection in the context of live music performance recordings.
As a structural element of our method we utilize a cascade of Tempo-
ral Convolutional Neural Networks (TCNs). Conventional frame based
spectral representations are used as audio input features, whereas, post-
processed body skeletons obtained with OpenPose constitute the visual
input source. The network is trained and evaluated on monophonic string
recordings from the University of Rochester Multi-Modal Music Perfor-
mance (URMP) Dataset. Experimental results indicate that our model
outperforms audio-based state-of-the-art methods and, additionally, that
the visual component enhances detection performance.

Keywords: onset detection - audio-visual analysis - TCN.

1 Introduction

Onset detection is one of the most fundamental problems in the field of Mu-
sic Information Retrieval (MIR). The state-of-the-art for audio onset detection
[8] applies a Convolutional Neural Network (CNN) on spectral representations.
However, music is not always experienced by humans solely through the aural
modality. For instance, the produced sounds of many musical instruments cor-
respond to certain visible movements and specific positioning of the instrument
player’s hands. Regarding the bowed string instruments, bowing motions are
comparatively easily detectable and are strongly correlated with note onsets.
In the recent years, deep learning methods for modality fusion have gained
increased interest [7]. Several innovative information extraction techniques that
rely particularly on fusing audio and visual sources of music have been evolved
[2], opening new areas for experimentation and further advancements. Audio-
visual analysis focusing on onset detection for string ensembles has been con-
ducted by Li et al. [3] to form a basis for score-informed audio-visual source
association. Audio-visual source association has also been handled using vibrato
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analysis [6]. In [4], the visual information was reduced to keypoints representing
body and finger joints using OpenPose. The vibrato and bow stroke approaches
have been combined permitting the generalization of the analysis on woodwind
and brass instruments.

In this paper we deploy Temporal Convolutional Neural Networks (TCNs)
and we demonstrate that the use of the visual modality can enhance the onset
detection method. We focus on bowed string instruments, where the hand and
body movement can provide cues on the beginning of the onsets.

2 Method Description

The main architecture employed in this work is a non-causal variant of the TCN
model proposed in [1]. The main advantage of TCNs is that, by applying di-
lated 1D convolutions, they can handle temporal information by conditioning
each prediction on an adequately long input, ensuring small added computa-
tional burden and large number of trainable parameters at the same time. In
this configuration, the dilation factor increases from one layer [ to the next by
2!, At each layer, we apply 150 convolutional filters of size 5 and dropout with
probability 0.25. One such network with 6 layers is applied on the visual source
(TCN-Visual) and one with 4 layers on the audio (TCN-Audio), both followed
by a linear layer with a softmax activation function predicting probabilities of
occurring and non-occurring onsets. Our fusion architecture relies on concate-
nating the outputs of the two models and feeding them to an output network
as presented in Fig. 1. Two different output networks were employed: a 4-layer
TCN and a 1-layer fully connected network. The predicted onset locations were
picked after computing local maxima of the activation function using centered
moving maximum with a window size of 5 consecutive frames. Such values were
taken under consideration provided that they exceeded a threshold of 0.5.

Our models are trained and tested on monophonic musical performance
recordings drawn from the University of Rochester Multi-Modal Music Perfor-
mance (URMP) Dataset [5] which also provides onset annotations. The raw
audio input of 48kHz is further processed and represented in the form of mel
spectrograms with 40 frequency bands, hop size of 512 samples and frame length
of 2048. As for the visual modality, we chose to use OpenPose for 2D pose es-
timation and we kept body skeletons comprised of 11 keypoints. Lower body
joints, from the knees and below, as well as keypoints corresponding to ears and
eyes, were all discarded since they are often occluded and they don’t add further
musical information. In order to create continuous skeletons that match the au-
dio frame rate, in certain frames, we eliminated specific keypoints that induced
unnatural movements, by following the post-processing steps from [4], and we
upsampled our data. In frames where certain joints were occluded or eliminated,
the keypoints were recreated using linear interpolation between valid frame in-
stances. Standard scaling per feature was applied for each separate performance.
Finally, keypoint velocities and accelerations were appended to the feature vec-
tors thus leveraging a 66-dimensional representation.
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Fig. 1. Fusion model that combines the outputs of the pre-trained visual and audio
sub-models by concatenating and feeding them to an output network (fc or TCN).

3 Experimental Setup

We evaluate the dataset using 8-fold cross-validation by computing the F mea-
sure for the predictions in each performance, with a tolerance window +50 ms
around the ground truth values. In the first phase of our experiments, two sep-
arate models were tested, one trained on the visual and one on the audio input,
using cross-entropy loss. As presented in Table 1, the audio sub-model outper-
forms the state-of-the-art (CNN-Audio) on URMP dataset. Its visual counter-
part naturally yields lower, yet notable results, and exhibits lower stability, as
reflected by the relatively high standard deviation among different folds.

In the second phase, the pre-trained sub-models are reloaded and an ad-
ditional network is fed with the their concatenated output vectors. Separate
experiments were conducted in order to test four distinct fusion strategies and
their potential to improve the performance in onset detection. The first strategy
was based on a cascade of TCN models (TCN-Fusion), where the loaded pre-
trained sub-models were rendered free to update their weights while training the
whole cascade model. The same arrangement was deployed in a second experi-
ment, this time keeping the sub-model parameters freezed (TCN-Fusion-Frzd).
In the alternative layout, with the linear network used in the output instead of
the TCN, as previously the sub-model parameters were at first left unfreezed
(TCN-LinO-Fusion). However, freezing the pre-trained sub-models (TCN-LinO-
Fusion-Frzd) proved slightly more beneficial in this arrangement.

As displayed in Table 2, TCN-Fusion achieves the most notable enhancement
(+0.5%) of the onset detector among the tested fusion strategies, in terms of
average scores. TCN-LinO-Fusion and TCN-LinO-Fusion-Frzd also outperform
the audio sub-model, with little difference from TCN-Fusion which suffered, early
on, from over-training. TCN-Fusion-Frzd was the only among the four models
to exhibit no enhancement of the detection performance.
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Table 1. Performance of models train- Table 2. Performance of fusion models for
ed on distinct modalities with 8-fold 8-fold cross-validation.
cross-validation.

. F measure

Models F measure Fusion Models Mean| Std.
Mean| Std. TCN-Fusion 0.926 |1.99%

TCN-Visual 0.64 |5.82% TCN-Fusion-Frzd 0.898 |3.54%
TCN-Audio [0.921(1.80% TCN-LinO-Fusion 0.923 |2.22%
CNN-Audio[8]| 0.886 |1.19% TCN-LinO-Fusion-Frzd| 0.925 |1.66%

4 Conclusions

The audio-visual onset detection exhibited a non negligible improvement over
the models which were trained solely on one source. This fact entails that the
visual model captured information that the audio model alone couldn’t.

As future work, the need to experiment with new fusion strategies is one of
our priorities. The same is true about improving the performance of the visual
model alone. This can have a positive impact on the fusion model. Experimenting
with polyphonic performances is another possible path which could give us the
opportunity to push further the limits of audio-visual onset detection analysis.
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Abstract. Audio textures, with complex structure spanning different
time scales, are a challenge to model and generate synthetically with
musical instrument-like interactive control. They are even challenging to
define. Deep learning approaches offer new ways to develop generative
audio texture models, and they create different demands on training data
than traditional modeling approaches. In this paper we briefly review pre-
vious modeling approaches, and attempt to rationalize and converge on a
definition of textures using modeling concepts. We introduce a new and
growing data set along with a system for managing metadata specifically
designed for audio textures. Finally, we report on some recent advances
in modeling these types of sounds.

Keywords: audio texture - sound database - generative models - audio
synthesis.

1 Introduction

1.1 Modeling Objective

The overall goal of this work is to create generative models of audio textures,
a class of sounds quite different, and arguable much larger and more complex,
than the class of pitched musical instrument sounds. Ideally, the models should
be capable of convincingly generating “natural” textures such as rain, crowd
murmur, crackling fire, or wind. They should offer control parameters that can
be designed to correspond to arbitrary paths through the space of sounds within
a model’s range (for example controls that are perceptually, semantically, or
musically meaningful). The model should be responsive to parameters in real
time, be capable of generating novel sounds between and beyond the sounds
used as training examples, and finally, be able to generate sound for any length
of time.

1.2 Defining textures

The literature on audio texture modeling is full of discussions and definitions of
that grapple with similar concepts, but a definition has proved elusive. Saint-
Arnaud and Popat[8] plotted the relationship between time and the information

* This research is supported by a Singapore MOE Tier 2 grant, “Learning Generative
Recurrent Neural Networks,” and by an NVIDIA Corporation Academic Programs
GPU grant.
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content in 3 classes of sound: 1) noise, 2) texture, and 3) speech and music. As
time progresses, the information in noise signals plateau early, while for speech
and music, information continues to rise with time. The graph of information
value for sound textures is in between that of the other two classes. It plateaus,
but at a higher level than noise, and at a point further along the time access.
This captures one of the key concepts concerning sound textures, that there
exists a window of time beyond which the description of the sound remains the
same. But it is worth being a little more precise. If the generating model is not
known a priori, the graph of the information content of a sound texture curve
approaches an asymptote but does not ever reach a slope of zero. Each new piece
of data can be used to refine a model further whether the model is perceptual
or computational.

Some authors have attempted to define textures by qualities inherent in the
sound rather than how it is modeled. For example, Schwarz[10], classifies contact
sounds from interaction with objects (such as friction and rolling sounds) as
not textures. This is because they violate the ”wallpaper” premise that fine
structure must remain constant over time. Similarly, Strobl et al.[11] rule out
the sound of a crying baby as a texture because “the characteristics of the fine
structure are not constant enough”. These intuitions about how a perceptible
“arrow of time” undermines the static nature of audio textures can be clarified
in two different ways with the help of some model-based terminology. One is
to separate the description of the information that is not constant over shifting
windows of time from the rest of the description. That is, we can recognize a
layer of ”content” upon which the textural part is conditioned. For example, a
rolling stone has weight and rate characteristics which determine characteristics
of the resulting sound. If those characteristics change over time, then so does
the texture. The distinction between content and texture depends on which
aspects we are explicitly modeling across time, and which aspects of variation are
drawn from a distribution that is constant across time. Thus the content /texture
distinction is made in terms of the model used to generate, describe, or perceive
a sound, and can be made differently even for one and the same audio example.
Another way to contextualize sounds with a strong “arrow of time” as textures is
by not considering them in isolation, but en masse. For example, if a collection of
rolling stones were heard, each having its own (possibly changing) speed chosen
from a random distribution, then the resulting sound would be a texture because
the description would be constant over different windows of time.

1.3 Previous modeling strategies

Past approaches to synthesizing audio textures have used granular synthesis|7, 9]
incorporating a distinction between fine time scale of audio and the larger scale
of grains, and wavelet trees that capture statistical relationships across both
time and hierarchical scales[2] based on individual sound examples. McDermott
and Simoncelli[6] developed a method for matching a set of specific statistics of
natural sounds. However, selecting specific time scales or statistics is to make
modeling commitments that may not hold for all natural sounds. More recent
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deep learning approaches tend to avoid engineering features, and to let the model
discover which features are important for a given data set.

2 PSoundSet - an audio texture database

Training neural networks typically requires large amounts of training data. There
are good reference data sets for music[l], musical instruments[3], and environ-
mental scenes[4], but they are either not specific to audio textures, or else labeled
for training classifiers or unconditional generators rather than for training syn-
thesizers under parametric control[5]. We have started building a new data base,
Parameterized Audio Textures Data Sets (PATSets, available online!) to address
this need.

The small but growing PATSet collection consists of both natural and syn-
thetic textures. Each set consists of multiple files that individually or in aggregate
sample a parameter space ( e.g. engine speed) that can be used for conditional
training. To handle the parameter management (labeling, writing and reading
files), we developed the paramManager (open sourced?) and a json-like parame-
ter file format. A key feature is that parameters are stored as a pair of time and
value arrays so that they can be sampled at much lower rates than the audio
files, and rates do not have to be regular. The paramManager code for reading
values at specific times (during training, for example) interpolates between the
stored values in the file.

Each sound set has its own database entry that includes other metadata
about how the sound was recorded or constructed as well as technical (bitrate,
channels, coding) specifications. Synthetic sets are stored with the code for cre-
ating them so that the integrity of the sound descriptions can be tested and
verified, and so that sounds sets other than than those already stored on the
database can easily be generated. Currently, the PATSet database allows audi-
tioning of all stored sounds, and files are converted to the required sample rates
when downloaded. In the future, most synthetic sound sets could be stored and
downloaded as code to be constructed only how, when, and where they need to
be used.

3 Experiments

We are currently generating and training models mostly with synthetic data
sets in order to systematically explore the capabilities and limits of the mod-
els for textures (testing long time dependencies in RNNs for example). We are
exploring an RNN that we previously developed for modeling musical instru-
ment tones (Wyse[12]). We use an RNN because it can be responsive to control
parameter changes within one audio sample in contrast to CNNs (and other

! https://sonicthings.org:9999/
2 https://github.com/lonce/paramManager
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architectures) that produce an extended duration of output for each param-
eterized control vector update. The model has been shown to generalize well
across a sparsely-trained musical pitch space, but struggles to generate timbres
“in between” instruments used in training. Here we report on the ability of this
architecture to model sound textures, far more complex than pitch instrument
tones, with statistical variation across a continuous range of time scales.

To demonstrate the core competence of the model for modeling textures, we
chose one of the synthetic sound sets in the PATSet database, “RegularPops68.”
The sound is constructed of a series of regularly spaced “pop” events at rates
from 2/sec to 32/sec, with rate as the parameter for conditioning during training
and control during synthesis. Each pop consists of 3 random samples of audio
followed by a narrow band-pass filter with a center frequency of 415Hz (midi note
68). The 3 random samples give a significantly different timbre and amplitude
to every single event. We expect the model to generate the ever-changing but
statistically constant variation of each event at the sample rate as well to model
the changing regular event rate specified by the conditioning parameter (see
Fig. 1, and corresponding audio online?).

1 +0dB
-10 dB
-20dB
-30 dB
-40 dB
-50dB
-60 dB

-10 dB

i

I

M
Fig. 1. Audio generated by an RNN trained on regularly spaced filtered random noise
“pops” parameterized by an event rate parameter. Both the conditionally specified

regular events and the unconditioned constant variation of the timbers are well captured
and reproduced.

-80 dB

4 Summary

Recent approaches to modeling provide tools for generating complex audio tex-
tures with differently structured information across a continuum of time scales.
We discussed the need to recognize the model in how textures are defined. We
introduced a new data set of audio and labels appropriate for training texture
models, and are exploring the potential of RNNs to model audio textures at
different time scales without having to engineer features.

3 http://animatedsound.com /research/MMT.2020/RegularPops68.wav
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Abstract. This paper attempts an empirical study on the effects of
symbolic music encoding for music generation with Recurrent Neural
Networks. Three distinct music encodings are examined and their char-
acteristics are discussed. Using a simple Long Short-Term Memory recur-
rent architecture, we generate different music excerpts and we evaluate
their output using statistical domain-based measures and human expert
knowledge.

Keywords: Symbolic-music representation - LSTM - Music generation.

1 Introduction

Choosing a proper data encoding is complicated, since the same musical piece
can be represented in a range of different expressive ways. While data repre-
sentation/encoding is one of the most important aspects of automatic music
generation, to the best of our knowledge, there have been no previous attempts
to measure its implications empirically. This paper presents preliminary results
of an ongoing research on empirically quantifying the effects of different repre-
sentations in the latent features learned by Recurrent Neural Networks (RNNs).

We identify two main families of encodings of symbolic music data: event-
based [2] and timestep-based encodings [1]. Even though in both encodings a
musical piece is represented as a sequence of events, their essential difference
is that in the second type each event has a fixed time-length, while in event-
based encodings, time is not directly related to the length of the sequence - each
‘step’ does not move time forward a-priori. Specifically, we study two different
timestep-based encodings, which we call tstep! and tstep2 (making a total of
three encodings, including the aforementioned event-based, denoted as event1).

In tstep1, the possible events range between 0-129. Events 0-127 are “note-
on” events, corresponding to the 128 MIDI note numbers, 128 is a rest event,
while 129 signifies “continue previous event”. This encoding is very parsimonious
and efficient, with the drawback that the event distribution it produces is greatly
skewed towards the 129 event (see Fig. 1b). In tstep2, we also have events in the
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Fig. 1: Distribution of ground truth labels for each representation (in logarith-
mic scale): a) eventl, b) tstepl and c) tstep2. The y axis denotes number of
occurrences.

0-129 range, with the main difference that here we assign to 129 a “note-off”

event, which stops the previously played note. This has the drawback that a
higher resolution than tstepl has to be used, in order to model two consecutive
same-pitch notes of the minimum duration [1], even though it greatly balances
the dataset distribution (see Fig. 1¢). Its main advantage is that time is directly
given by the length of each sequence, letting the network to learn timing without
additional cues, such as meter information [1].

Eventl uses events denoted with integers in the range 0-337, where: 0-127 are
“note-on” events, 128 denotes a rest, 128-255 are “note-off” events and 256-337
denote time-shift events, that move time forward by a specific value. This encod-
ing has the advantage of itegrating seamlessly other features, such as velocity,
by adding special events (as done in [2]). Additionally, by choosing appropriate
time resolution for our time-shift events, we can represent longer sparse pieces of
music with very short sequences, thus reducing memory and computation cost
significantly.

2 Dataset, Preprocessing and Network Architecture

Restricting ourselves to monophonic melodies in the european canon, we chose to
use 7264 melody transcriptions in the **kern format (a light text-based symbolic
music format), from the Essen corpus of the online KernScores library!. Using
the python library music212, we extracted the necessary information from the
**Lern files for each encoding and exported as numpy arrays. Then we split
each encoding array into batches of 256 sequences, with a sequence length of
64. Additional preprocessing of the input data involves one-hot encoding, to
feed into the network. We have chosen to use a very simple architecture, with a
single layer of 36 LSTM cells, followed by a dense layer with a softmax activation.
A sliding window method is used to auto-regressively produce new sequences.
This choice is deliberate; using a simple well-known system, we can focus on the
differences caused by the data encodings considered herein.

! nttps://kern.humdrum.org/
2 http://web.mit.edu/music21/
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Fig. 2: Pitch Class Histogram intra and inter-set distributions for the three gen-
erated sets. Setl is always the Dataset, while set2 is: a) event!, b) tstep! and c)
tstep?2.

3 Evaluation and Results

We follow the domain-specific evaluation strategy for music generation networks
proposed in [3]. We choose 200 random pieces from our validation set, and by
using the first part as a seed melody we generate a set of 200 8-bar melodies
(exactly 16 seconds long with a BPM of 120) for each encoding. We then compute
12 music-specific features for each set: Pitch Count(PC), Note Count (NC), Pitch
Class Histogram (PCH), Pitch Class Transition Matrix (PCTM), Pitch Range
(PR), Average Pitch Shift (PS), Average Inter-onset Interval (IOT), Note Length
Histogram (NLH), Note Length Transition Matrix (NLTM).

In order to be able to compare different systems, we perform an exhaus-
tive cross-validation, by comparing each sample from one set to either all other
samples of the same set (intra-set distance), or to all samples of another set
(inter-set distance). These relative measures give a histogram for each feature,
from which we compute a continuous Probability Density Function (PDF) using
Kernel Density Estimation. To compare the generated data with the original,
we compute the KL Divergence (KLD) and Overlapping Area (OA) between
the intra-set PDF of the generated data with the inter-set PDF between the
generated and original data. A low KLD indicates similarity in the shape of the
compared distributions while a high OA indicates a higher probability density
overlap.

We focus towards answering the question: which of the three representations
produces pieces that more closely resemble the initial dataset and why? The ab-
solute measures, while giving some insights, they provide only a weak correlation,
or fail to give the “bigger” picture.

Looking at the relative measures, we begin to see some trends. In Fig. 2, we
plot the computed PDFs for the intra-set and inter-set distances of the Pitch
Class Histogram, between the original dataset and each generated set. We notice
a repeating tendency when looking at the plots for all features, that event! is
always closer to the original set. This can also be seen when looking at the
similarity measures in Table 1, where event! has consistently very high OA and
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Table 1: Intra-set similarity measures for the three encodings.

PC PC/bar NC NC/bar PCH PCH/bar PCTM PR PS I0I NLH NLTM

tstepl KLD|0.738 0.059 0.286 0.162 0.054 0.310 0.112 0.770 0.001 0.038 0.045 0.400
OA |0.831 0.589 0.569 0.532 0.844 0.847 0.390 - 0.9350.829 0.763 0.461

tstep2 KLD|0.272 0.403 0.028 0.110 1.094 1.491  0.326 0.020 0.008 0.031 1.525 0.058
OA ]0.819 0.943 0.944 0.847 0.339 0.357 0.638 0.864 0.881 0.847 0.058 0.236
event1 KLD|0.501 0.069 0.017 0.022 0.035 0.132 0.079 0.164 0.004 0.006 0.043 0.061
OA ]0.908 0.925 0.906 0.933 0.815 0.828  0.877 0.892 0.860 0.922 0.909 0.891

small KLD, which suggests a high similarity to the original dataset, while the
other two encodings show some ”better” and some ”weaker” features.

This is all consistent with human expert evaluation. When listening to gen-
erated samples, a number of observations are apparent: Samples from event! are
clearly superior in quality, following both rhythmically and tonally the style of
the dataset. The only anomaly (which is not obvious from the statistical analysis)
is that the examples fail to follow a metric structure, resulting in syncopations
at best or entirely arythmic at worst (which happens rarely). This is probably
due to directly sampling the softmax distribution, resulting in “wrong” time-skip
events being chosen (especially given the distribution of the time skip events - see
Fig. 1a). Many of these syncopations are also inaudible when listening without a
metronome or rhythm accompaniment. Tstep1, while being mostly consistent in
metric structure, produces many off-key notes and irregularly spaced intervals
(this can also partly be due to sampling). Examples from tstep2 seem to be the
weakest of the three, both rhythmically and in pitch, holding many long notes
(as expected by its data distribution), followed by flurries of short notes (which
can be due to sampling).

All the generated examples of the study at hand can be found at the project’s
online repository?.

4 Conclusion and Future Work

While the current study is considered successful, there remain many unexplored
parameters, such as the importance of resolution or timestep length, the use of
more harmonically and rhythmically diverse datasets, and also to polyphonic
music, with expressive information such as velocity. Maybe the most important
question which has not been tackled, is the apparent superiority of text-based
representations, especially for monophonic music generation. Using findings from
our research, we hope to produce an exhaustive classification of the most effective
ways to model symbolic music. Ongoing work also involves a deeper investigation
of the network’s inner workings, such as weight activation patterns for each
encoding or applying and investigating attention mechanisms and other network
architectures.

3 https://github.com/manosplitsis/MusicRep

Proceedings MML 2020 = ECML/PKDD 2020 = 18.9.2020

44



Symbolic encodings for music generation 5

References

1. Eck, D., Schmidhuber, J.: Finding temporal structure in music: Blues im-
provisation with Istm recurrent networks. vol. 12, pp. 747 — 756 (02 2002).
https://doi.org/10.1109/NNSP.2002.1030094

2. Oore, S., Simon, I., Dieleman, S., Eck, D., Simonyan, K.: This time with feeling;:
Learning expressive musical performance. CoRR abs/1808.03715 (2018), http:
//arxiv.org/abs/1808.03715

3. Yang, L.C., Lerch, A.: On the evaluation of generative models in music. Neural
Computing and Applications pp. 1-12 (2018)

Proceedings MML 2020 = ECML/PKDD 2020 = 18.9.2020

45



Medley2K: A Dataset of Medley Transitions

Lukas Faber*, Sandro Luck*, Damian Pascual*, Andreas Roth*, Gino Brunner,
and Roger Wattenhofer

ETH Zurich, Switzerland
{1faber,dpascual,brunnegi,wattenhofer}@ethz.ch
{sluck,rothand}@student.ethz.ch

Abstract. The automatic generation of medleys, i.e., musical pieces
formed by different songs concatenated via smooth transitions, is not
well studied in the current literature. To facilitate research on this topic,
we make available a dataset called Medley2K that consists of 2,000 med-
leys and 7,712 labeled transitions. Our dataset features a rich variety of
song transitions across different music genres. We provide a detailed de-
scription of this dataset and validate it by training a state-of-the-art
generative model in the task of generating transitions between songs.

1 Introduction

Automatic music generation has undergone major development in the last few
years, thanks to the progress of deep learning. Indeed, previous studies have
demonstrated the ability of deep learning models to generate pleasant music in
many different applications Yang et al. (2017); Dong and Yang (2018); van den
Oord et al. (2016); Waite et al. (2016); Pati et al. (2019); Boulanger-Lewandowski
et al. (2012); Briot et al. (2019); Brunner et al. (2018); Huang et al. (2019); Mo-
gren (2016). To perform well, these models need large amounts of training data
and, depending on the application, collecting such data may not be a trivial task.
In this work, we contribute to the growing field of automatic music generation
by presenting Medley2K, a new dataset for MIDI medley composition.

A medley is a special type of music piece that is formed by connecting dif-
ferent songs through specifically crafted musical transitions. Despite the pop-
ularity of medleys, existing literature has not addressed transition generation,
yet. One reason for this is the lack of medley-specific datasets, which hampers
progress in this field. Collecting such a dataset is challenging since it requires
precise annotations of the transitions between individual songs. Our dataset con-
tains machine-readable labeled transitions extracted from 2000 human-curated
medleys. In this work, we give a complete description of Medley2K, and we em-
pirically show that it can be used to train deep generative models for medley
transition generation.

* Authors in alphabetical order.

Proceedings MML 2020 = ECML/PKDD 2020 = 18.9.2020

46



2 L. Faber et al.

2 Related Work

Although a considerably large number of datasets for music modeling are publicly
available (a sample collection can be found here!), none of those datasets is tai-
lored to medley composition. In particular, the name-related MedleyDB dataset
(Bittner et al., 2014, 2016) contains polytrack music of single songs rather than
medleys. Conversely, our dataset consists of medley pieces with detailed labels
on the transition points in order to foster further work on automatic medley
composition.

3 Dataset: Medley2K

Medley2K is a new dataset that consists of 2000 human-created medleys crawled
from the website musescore.com with a total of 10,269 transitions. All medleys
are licensed as shareable, while only a subset is available for commercial use. The
dataset contains a rich variety of medleys spanning across several paces, musical
scales, and genres. The medleys are on average 6 minutes long with 17.47 key
changes and 9.99 tempo changes. Furthermore, the medleys in the dataset have
rich instrumentation, featuring an average of 7.65 different instruments. Addi-
tionally, as seen in Figure 2a, all instruments except for the “Acoustic Grand
Piano” occur in less than 10% of medleys, which means that the instrumenta-
tion varies largely across samples. The medleys from musecore come as MIDI
files, together with PDF scoresheets and a machine-readable MXL file. Typically,
composers annotate the point in time where one song in the medley transitions
into the next in the scoresheet. These transitions usually start at the beginning
of a new bar. We parse the MXL file for annotation indicating such transitions
points. To ensure data quality, we filter annotations that do not indicate a tran-
sition; in particular, we ignore annotations of numbers, musical symbols (such
as J), or a manually defined blacklist of musical expressions (such as “vivante”).

We evaluate the quality of this extraction method on 30 medleys manually
labeled, with a total of 205 actual transitions. Table 1 shows the confusion ma-
trix between the actual transition points and the labels given by our extraction
method. Overall, the automated extraction achieves a precision of 90.70% and
a recall of 57.07%. Note that the high precision value indicates that what we
identify as a transition (and will potentially feed into a machine learning model)
is very likely a genuine transition. The recall means that we can still extract
more transition points, i.e., assuming the method has a similar recall over the
whole dataset we could find around 18,000 transitions. Thus, the labeling —
while not complete — is of high quality.

! https://ismir.net/resources/datasets
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True Positive True Negative
Predicted Positive 117 12

Predicted Negative 88 4370
Table 1: Validation of Labeling Process

Next, we examine the notes around the transition point. We observe that
for a large fraction of transitions (around 30%) the music around the transition
point contains only silence or a single long-held note. These samples cannot be
used to learn transitions that consist of more than one note. Since we want to
focus on musically pleasant transitions with different notes, we filter the data
by looking at the two half bars preceding and the two half bars following the
transition point. If a new note starts in either of those four half bars, we keep
the transition, otherwise we discard it. This way, each transition consists of at
least four played notes. In Figure 2b we show in more detail the number of notes
played. The filtered transitions have a high variety of notes ranging from four
to more than 60 notes. After this postprocessing, we compose the final dataset
with a total of 7,712 labeled transitions.
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4 Experimental Evaluation

In this section, we conduct an experimental study on the validity of the Med-
ley2K dataset for automatic medley composition. To this end, we use a deep
neural model that learns to generate Medley transitions as a specialization of
the task of filling gaps in music — also called music inpainting. We build on
the InpaintNet architecture by Pati et al. (2019) and extend it to support poly-
phonic music while keeping the same hyperparameters. Given that some internal
components of the InpaintNet architecture are tailored to 4/4 beats, we omit in
this experiment all transitions with a different beat, resulting in 4, 662 transition
points. For each transition, we generate a sample by taking the four bars around
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the label plus the four bars preceding (past context) and following (future con-
text) the transition point, i.e., 12 bars in total. We encode the data from our
Medley2K dataset with a scheme similar to Hadjeres et al. (2017), except that in-
stead of using one symbol for holding the previous note, we use one extra symbol
per note to denote “Hold”. Although it doubles the number of classes, we found
that this encoding reduces class imbalance and improves model performance.

To validate our dataset, we compare two models, one trained with transition
data and one trained with arbitrary portions of music from the dataset. We
split the transition data into 80/10/10 for training, validation, and test, where
the test data is used to evaluate both models. Furthermore, for each model, we
consider two training sets, one consisting of 100% of the training transitions (or
the equivalent number of samples of arbitrary music), and one with 50% of the
samples. The results of these experiments are shown in Figure 3, which shows
that given the same amount of data, training on transition data yields better
performance on the test set than arbitrary music. In fact, even using only 50% of
the transition training is better than using twice as much data of arbitrary music,
which demonstrates that training on transitions largely benefits the automatic
composition of medleys. This validates our Medley2K dataset as a valuable tool
for further work in automatic medley generation.
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Fig.3: Performance (NLL loss) of the generative model. Solid lines denote full
training sets, dotted lines half training sets. Training on transitions only (bottom
lines) achieves better results than training on general music (top lines).

5 Conclusion

We make available? the first dataset for medley composition of MIDI music.
The dataset has a rich variety of music pieces, instrumentation, key changes,
and tempos. We provide machine-readable labels for 7, 712 transition points and
validate the dataset by demonstrating its ability to train a state-of-the-art model
for music generation. We expect that this dataset will encourage further research
in the field of medley generation and automatic medley detection.

2 https://polybox.ethz.ch/index.php/s/STSczoZ2e0IcoVE
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Abstract. We describe a pilot cross-cultural study involving the exami-
nation of music materials composed by children within specific geo-
graphical regions. The music materials are audio song-writing composi-
tions during workshops as part of the European Project Future Songwrit-
ing in three schools in Germany and Finland. We extract music infor-
mation retrieval techniques to extract acoustic features from the audio
recordings, including spectral centroid, spectral bandwidth, roll-off, zero
crossing rate and MFCCs, and apply feature selection to the resulting
feature set. We then apply machine learning techniques to classify re-
cordings from different geographical areas. Interestingly, we obtain pre-
dictive models capable of classifying the music materials with accuracies
well above chance level. This seems to indicate that the features consid-
ered provide acoustic information about the pieces and that machine-
learning algorithms are capable of use this information to distinguish the
compositions of different geographical locations.

Keywords: Songwriting, music composition, machine learning, music infor-
mation retrieval.

1 Introduction

Music may be characterized by three aspects: sound, behaviour, and con-
cept (Tooby, 1990). Music sound can be defined as a class of auditory
signals that are produced by performers. and perceived by listeners,
which is composed of melodic, harmonic, rhythmic, timbre, temporal
and dynamic components. Music behaviour is associated with activities
such as performance, composition, dance, ritual, etc. Music concept has
specific functions within any social group (Clayton, 2001; Cross, 2003;
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2006; Dissanayake, 2001). The culture concept refers to the set of behav-
iours, beliefs, social structures, and technologies of a population that are
passed down from generation to generation. It includes social conven-
tions related to art, dress, dance, music, religion, etc. It is worth noting
that the term culture is not equivalent to ‘country’ or ‘continent’. More-
over, most individuals do not ‘belong’ to a single culture.

A number of cultural influences can act upon particular individuals,
merging and manifesting themselves when performing and composing
music. In this paper, we describe a pilot cross-cultural study involving
the analysis of music materials composed by children in different geo-
graphical regions. The music materials are songwriting compositions
produced during school workshops as part of the European Project Fu-
ture Songwriting in nine schools in Germany and Finland. We are sensi-
tive to the fact that it is impossible to characterize nations as singular
cultures and compare them with one another. Instead, the current study
attempts to investigate if there are common or distinctive compositional
patterns in schools in different geographical regions.

2 Materials and Methods

2.1 Music material

Songs composed by children in Finland and Germany were recorded
in the context of the Future Songwriting  project
(www.futuresongwriting.eu). Future Songwriting is a two-year Euro-
pean project focusing on creativity and digital tools in music education
funded by the Creative Europe programme of the European Commission.
Future Songwriting involves creative school pilot projects for students in
Finland, France and Germany. During school pilots, pupils get to com-
pose, write lyrics, arrange, record and produce their own songs. Students
compose music by utilizing technology and do not require prior musical
knowledge or of music theory, or the ability to play traditional instru-
ments. For this preliminary paper we consider 20 song compositions re-
cordings from 3 schools in different geographic locations, in Finland (2
schools) and Germany (1 school).
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2.2 Methods

The following music features were extracted from the audio recordings
using Essentia (Bogdanof, 2013), an audio analysis library for music in-
formation retrieval developed by the Music Technology Group, Univer-
sitat Pompeu Fabra.

* Chroma: This feature is useful for analyzing music whose tuning
approximates to the equal-tempered scale. It captures harmonic
and melodic characteristics of music, while being robust to
changes in timbre and instrumentation.

* RMSE: The root-mean-square energy (RMSE) is related to the
loudness of the signal. It is useful for getting a rough idea about
the loudness of a signal.

* Spectral centroid: This feature is a measure used in digital signal
processing to characterise a spectrum. It indicates where the cen-
ter of mass of the spectrum is located. Perceptually, it has a robust
connection with the impression of brightness of a sound.

* Zero crossing rate: It is the number of times that the signal
crosses the zero value in the buffer. It helps differentiating be-
tween percussive and pitched sounds. Percussive sounds will
have a random ZCR across buffers, where pitched sounds will
return a more constant value.

* Spectral spread: Indicates how spread the frequency content is
across the spectrum. Corresponds with the frequency bandwidth.
It can be used to differentiate between noisy (high spectral
spread) and pitched sounds (low spectral spread).

e Spectral rolloff: 1t is the frequency below which is contained 99%
of the energy of the spectrum. It can be used to approximate the
maximum frequency in a signal.

* Mel-Frequency Cepstral Coefficients (MFCCs): As humans do
not interpret pitch in a linear manner, various scales of frequen-
cies were devised to represent the way humans hear the distances
between pitches. The mel scale is one of them.

We applied a wrapper feature selection algorithm to select a subset of the
original feature set. The resulting features (chroma, spectral rolloff and
MFCCs) were used to train classifiers using machine learning algorithms
for distinguishing compositions from different geographical locations.
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3 Results

The accuracy (i.e. correctly classified instances percentage) obtained by
both artificial neural networks (Chauvin, 1995) and decision trees algo-
rithm (Quinlan, 1993) was 70% (baseline = 40%) using stratified 10-fold
cross validation evaluation (see Table 1 for details). This result seems to
indicate that the reduced number of features considered provide infor-
mation about the acoustic characteristics of the musical pieces and that
machine-learning algorithms are capable of using this information to dis-
tinguish the compositions at different geographical locations. It is worth
noting that the two Finish Schools are from geographically distant re-
gions with different cultural traditions. Interestingly, the German school
compositions are more differentiable from the other two Finish schools
than the two Finish schools. Table 2 shows the confusion matrix of the
induced classifier obtained by applying the decision trees algorithm.

Table 1. Detailed accuracy by class (Finish School 1 [FS1], Finish School 2
[FS2], German School [GS]) and weighted average (WA)

TP Rate FP Rate Precision Recall F-Measure ROCArea Class
0.571 0.154 0.667 0.571 0.615 0.786 FS1
0.600 0.133  0.600 0.600  0.600 0.873 FS2
0.875 0.167 0.778 0.875 0.824 0.818 GS

WA 0.700 0.154 0.694 0.700 0.695 0.820

Table 2. Confusion matrix of the Decision tree classifier

Finish School 1 | Finish School 2 | German School
Finish School 1 57.4% 28.4% 14.2%
Finish School 2 40% 60% 0%
German School 0% 12.5% 87.5%

Analysis of the feature set showed that the most informative features for
the obtained classifiers were MFCCs, spectral rolloff and chroma. In
view of this preliminary results, it is worth exploring other acoustic fea-
tures for training the classifiers and to include more data in the analysis.
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4 Conclusions

We have presented a study involving the analysis of music materials
composed by children in distinct geographical regions. We extracted
acoustic features from the audio recordings, automatically selected a fea-
ture subset and then applied neural networks and decision trees algo-
rithms to classify the recordings from different locations. We obtained
an accuracy of 70%, well above chance level. This result seems to indi-
cate that the reduced number of features considered provide information
about the acoustic characteristics of the musical pieces and that machine-
learning algorithms are capable of use this information to distinguish the
compositions of different geographical locations. This preliminary re-
sults lead the way to extend this work by exploring more features and
extending the training data.
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Abstract. Optical Music Recognition (OMR) is the research field that
studies the music transcription from music score images into a digital for-
mat. Recently, this process has been formulated as a machine-learning
problem, obtaining excellent results in controlled scenarios. However,
a domain change could seriously affect performance. In this paper, we
present a study of performance degradation in cross-manuscript experi-
ments in two relevant steps of the OMR workflow. The results confirm
this decrease, leaving room for enhancement with techniques as data
augmentation, re-training or domain adaptation.

Keywords: Cross Domain - Music Recognition - Full-page Digitization.

1 Introduction

In the last years, Optical Music Recognition (OMR) [1] has been addressed as a
machine-learning problem, being Deep Neural Networks (DNN) one of the well-
known promising methods to process music documents through a generalizable
strategy. Recently, it has been proved that it is possible to perform a full-page
music recognition in only two steps, based on neural networks [4]: staff-region
detection combined with end-to-end staff-level recognition. Results have demon-
strated the goodness of the method, but it has been evaluated only using the
same manuscript that was used to train the models.

A typical drawback of machine-learning methods is the lack of generalisation
when the model predicts data from other domains different to those consid-
ered in the training process. This issue could be alleviated with straightforward
strategies such as data augmentation [9] or re-training, but although they usu-
ally provide good results in controlled environments, they could not be enough
in practice. In this paper, we contribute with a study on this issue, with a cross-
domain evaluation for Mensural documents to determine whether there is room
for improvement that could be achieved with strategies such as data augmenta-
tion or Domain Adaptation (DA) techniques [6, 8].
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2 Methodology

In a recent work [4], a neural approach for full-page music transcription with
only two steps was presented. That work shown that it is possible to transcribe
music score images into a digital music sequence by combining two processes:
a staff-region recognition addressed through a Selectional Auto-Encoder (SAE),
which was already successfully used for layout analysis [5], followed by an end-
to-end approach based on Convolutional Recurrent Neural Networks (CRNN) [2]
to extract the music sequence from each staff detected in the previous step.

The method was evaluated with two corpora, obtaining excellent results when
the domain considered is the same throughout the process. In this paper, we
extend the experiments performed to study the loss of performance in cross-
document evaluation, i.e. training the models with pages of a manuscript and
predicting with documents belonging to another collection.

3 Corpora

We consider two datasets, already used in previous works:

— CAPITAN: Missa of 97 handwritten pages from the 17th century [3]. It con-
tains 737 staves with 17 112 running symbols of 53 symbol categories.

— SEILS: Symbolically Encoded Il Laurro Secco consists of 150 printed pages
from the 16th-century anthology of Italian madrigals Il Lauro Secco [7]. The
piece contains 1278 staves with 31 589 symbols within 33 possible categories.

Note that, although both collections are writtten in Mensural notation, CAPITAN
is handwritten and SEILS is printed. Examples of each one are shown in Fig. 1.

(b) CAPITAN.

Fig. 1: Page examples of each dataset.

4 Staff-region recognition

As aforementioned, the first process we consider for extending experiments is the
staff-region identification. This is performed by a SAE specialized in detecting
staff areas. The results, included in Table 1, are presented in terms of F-score
(F1)* due to the unbalanced nature of data, precision, recall and Intersection

! We consider ToU of 55% or higher as True Positive, while lower figures are considered
as False Negative or False Positive.
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over Union (IoU), which provides a measure of the overlapping between the
predicted staff regions and the ground-truth ones.

Table 1: Staff-retrieval average results in terms of F-score (F}), precision (Prec.),
recall (Rec.) and IoU represented in %.

Test CAPITAN SEILS
Train Fy  Prec. Rec. IoU| Fi1 Prec. Rec. IoU
CAPITAN 99.8 99.8 99.8 81.1| 72.3 73.9 73.3 63.4
SEILS 52.3 67.6 46.3 40.3| 90.2 91.9 89.0 76.8

The results confirm the reduction in cross-domain situations of all the con-
sidered metrics. It could be highlighted the F-score figures from 99.8% to 52.3%
for CAPITAN tests, and 90.2% to 72.3% for SEILS. Also, it should be noted the
reduction in ToU from 81.1% to 40.3% for the handwritten manuscript, while
SEILS is less affected. The engraving of the manuscript could be the reason for
this difference. To complement these results, Fig. 2 shows the IoU histogram,
whose overlapping in the cross-domain scenario is detrimental compared with
the on-domain stage. Therefore, it could be concluded that the quality of the
bounding boxes is negatively affected.

L e e e e e R S T
On-domain -+~
25| Cross-domain

*

/
20 [ !

Number of staves (%)

} 4 4 } } } } } } TR I I I I
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Intersection over Union (%)

Fig.2: Average histogram of staves predicted in the staff retrieval stage and
ordered by IoU with a granularity of 5%.

5 End-to-end staff-level recognition

Once reported the performance of staff retrieval, in this section we focus in end-
to-end staff-level recognition to retrieve the music sequence. These results are
shown in terms of Symbol Error Rate (SER), which is computed as the ratio of
editing operations to transform the predicted sequence to the expected (ground
truth), being the lower, the better.

Table 2: End-to-end average results in terms of SER and represented in %.

Test
Train CAPITAN SEILS
CAPITAN 13.2 60.1
SEILS 79.3 4.4
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As for the experiments, shown in Table 2, the change of domain is also highly
disadvantageous, increasing the error figures for CAPITAN from 13.2% to 60.1% of
SER, while the error rate in SEILS reaches 79.3% when the on-domain experiment
yields 4.4%. The results indicate a high margin of improvement in all cross-
domain cases, thereby being interesting as a research challenge.

6 Conclusions

OMR is a research field that has recently been formulated as a machine learn-
ing task, obtaining excellent results in controlled environments. However, this
promising generalizable strategy, does not provide a solution in practice for cross-
domain problems. We report cross-manuscript results for Mensural documents,
concluding that the performance is seriously affected by the change of domain,
increasing the error rate considerably. The results show a wide room for im-
provement, being Domain Adaptation a potential strategy to solve this issue.
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Abstract. Many factors are involved in the definition of music genres,
making it an active area of research. This work focuses on verifying
the connection between harmonic information and genre specification in
Brazilian music, through the evaluation of feature importance in machine
learning models. We construct four different sets of manually engineered
harmonic features and assess how they relate to the accuracy of the
models, as well as explore the mistakes made by the model in each genre.
‘We identified the most relevant features to be the harmonic ones, followed
by external features such as popularity and the proportions of the most
common chord transitions in each song.

Keywords: chord features - feature importance - genre characterization.

1 Introduction

Genre is an important form of classifying songs, as they facilitate the search for
music, and users even prefer to use genre instead of other metrics when look-
ing for new music [9]. However, many factors are involved in the configuration
of a music genre, such as style, historical context, and harmonic structures [3],
making the definition of each genre unclear. Inconsistencies and blurriness in the
definition of musical genres pose an important problem in various aspects of mu-
sic studies and is an active area of research in MIR. For such reasons, the focus of
this work is towards verifying the connection between harmonic information and
genre specification in Brazilian music through the evaluation of feature impor-
tance in machine learning models. In addition, as [4] and [6] observed, mid-level
music features such as chords configure a rich resource of information regarding
genres. The chords sequence of a song fully describes its harmonic progression
and it represents a meaningful part of the total music structure. With that, in
this work, we also focus on the use of symbolic chords data and in manually ex-
tracting harmonically related features for genre classification, representing the
chords structures in different and meaningful forms.

Related work has been done all of the usual representations of music data,
for example, [14], [18], [1] and [17], which focused in music genre classification
using audio extracted features. As for text data related to music, [11] presents
a discussion about the characterization of genres through song lyrics. In [5], the
authors introduced a vector based representation for chords sequences, bringing
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light to an effective way to extract information about symbolic chords data. A
similar problem to ours was studied in [15], which focused on harmonic features
for genre classification.

2 Definitions

2.1 Data

The data was extracted from the Cifraclub website (https://www.cifraclub.com.br/),
an online collaborative page of music-sharing, via the chorrrds [19] package for
R [16]. Though the use of user-inputed (or crowd-sourced) music chords is not
very common in MIR due to the possible inconsistencies, recent literature [12,
7] has been showing its value to the community. In total, 8 music genres were
used: Reggae, Pop, Forré, Bossa Nova, Sertanejo, MPB, Rock and Samba, all
good representatives of the Brazilian music, and from these genres, 106 different
artists were available in the online platform, for which the chords and keys for
8339 different songs were collected. Complementary features about the release
year and popularity were obtained with the aid of the well-known Spotify APIL

2.2 Manually Extracted Features

In this work, we emphasized on obtaining various interpretable summary fea-
tures from the chords, to make use of more information than only the symbolic
form of the chords. The engineered features were separated into four thematic
groups, organized as the First set, triads and simple tetrads: percentage
of suspended chords (e.g. Gsus), of chords with the seventh (e.g. C7), of minor
chords with the seventh (e.g. Em7, C#m7), of minor (e.g. Em, C#m), of dimin-
ished (e.g. B°), and of augmented (e.g. Baug) chords. Second set, dissonant
Tetrads: percentage of chords with the fourth (e.g. D4), the sixth (e.g. E6), the
ninth (e.g. G9), with the major seventh (e.g. F74+, Am7+), with a diminished
fifth (e.g. C5- or C5b) and with an augmented fifth (e.g. C5+ ou C5#). Third
set, main chord transitions: percentage of the first, second, and third most
common chord transitions in the song. Fourth set, miscellany: popularity, to-
tal of non-distinct chords, year of album release, indicator of the key of the song
being the same as the most common chord, percentage of chords with varying
bass (e.g. C/E, C/G, C/Bb), mean distance of the root note to ’C’ in the circle
of fifths, mean distance of the root note to ’C’ in semitones, absolute number of
the most common chord.

2.3 Machine Learning Algorithm

We used the popular Random Forest [2] model, which is mainly characterized
by being a tree ensemble that only allows a random subset m of the features to
be the candidates for a split, helping to create uncorrelated trees. This bagged
ensemble can be written as f(x) = fogfe Ntlm fn(x), where f,, corresponds to
the n-th tree.
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3 Results

Table 1. Goodness of fit for the four models: overall accuracy with lower and upper
bounds and Kappa statistic with the respective p-value.

Model Accuracy L.B. U.B. Kappa P-Value
Model 1 0.53 0.51 0.55 0.37 < 0.0001
Model 2 0.57 0.54 0.59 0.42 < 0.0001
Model 3 0.59 0.56 0.60 0.44 < 0.0001
Model 4 0.62 0.60 0.64 0.49 < 0.0001

Our target variable here is the music genres, and the predictors are the
engineered features. There is extensive literature in genre classification and we
do not intend to claim that this is a better model than the others, as our primary
goal is to observe how the features relate to the accuracy rather than obtaining
the best accuracy possible. Four models were fitted in a nested fashion, with
each new model being added with one of the features sets described before.
Table 1 shows that, for all different models, there is evidence of their accuracy
being significantly higher the non-information classification rate. The addition
of feature sets progressively increases the accuracy of the models, evidencing
that the 4 sets of features are informative to predict the genres. The increase is
seemingly uniform: to each new set of variables added, the increase is about 3%.

Table 2. Confusion matrix for the model with all the features.

Bossa Nova Forr6 MPB Pop Reggae Rock Samba Sertanejo

Bossa Nova 0.28 0.00 0.40 0.00 0.00 0.05 0.16 0.12
Forrd 0.00 0.00 0.12 0.00 0.00 0.12 0.10 0.65
MPB 0.01 0.00 0.59 0.00 0.00 0.11 0.13 0.15

Pop 0.00 0.00 0.13 0.00 0.00 0.28 0.15 0.44
Reggae 0.00 0.00 0.25 0.00 0.08 0.46 0.08 0.12
Rock 0.00 0.00 0.16 0.00 0.00 0.43 0.05 0.35
Samba 0.01 0.00 0.20 0.00 0.00 0.03 0.66 0.10
Sertanejo 0.00 0.00 0.02 0.00 0.00 0.07 0.02 0.89

Figure 1 shows that the first set of features is the most informative one, mean-
ing that with the basic chords information we can already obtain good results in
terms of informing the model about the genres. The external variables, such as
the year and popularity, got a high rank in the plot, showing how the Spotify fea-
tures are also pertinent. The position of the transitions and distances variables
strengthen the idea of harmonic characteristics being important to discriminate
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Fig. 1. Importance plot for the fourth model with all the considered features. The top
part of the plot is dominated by harmonic features.

music genre. From Table 2, we can see that there is considerable confusion be-
tween MPB and Bossa Nova, highlighting their known harmonic similarities.
The same happens to Forré, Sertanejo and Pop, which are music genres with a
similar origin and, in general, more elementary harmonic structures.

4 Conclusions

With our results, we conclude that manually engineered harmonic features can
be useful to to characterize Brazilian music genres. More than just predicting
music genres, which does not have a consensual utility in the literature, we are
interested in inferring which harmonic features are informative for the definition
of genres. In our case, the most discriminative features are the percentage of
chords with the seventh note, of minor chords with the seventh note, of minor
chords, the year of release of the songs, the popularity and the behavior of the
most common chord transitions. Apart from that, though our work was limited
to one geographic region, we believe that our insights can be extended to other
types of music that influenced or were influenced by the genres considered here,
such as Jazz, Pop, and Rock music.

The next steps of this work include specially the engineering of the new
variables and applying different algorithms, such as deep learning models [8]
and naive Bayes models [10], as in [1] and [13], though they might have less
interpretable results. In a different sense, we would also like to explore more the
use of crowd-sourced data and the relationship between song popularity and the
precision of this type of data.
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Abstract. In this paper we present a new dataset, with musical excepts from
the three main ethnic groups in Singapore: Chinese, Malay and Indian (both
Hindi and Tamil). We use this new dataset to train different classification mod-
els to distinguish the origin of the music in terms of these ethnic groups. The
classification models were optimized by exploring the use of different musical
features as the input. Both high level features, i.e., musically meaningful fea-
tures, as well as low level features, i.e., spectrogram based features, were ex-
tracted from the audio files so as to optimize the performance of the different
classification models.

Keywords: Music Classification - Ethnic Groups - Machine Learning

1 Introduction

Singapore is a cultural melting pot, with a majority of Chinese, Malay and Indian
individuals. It is thus no surprise that Singaporean music is influenced by several dif-
ferent ethnical groups. The earliest form of music in Singapore was traditional Malay
music [14], which came from the original settlers of Singapore. They are now the sec-
ond largest ethnic group in Singapore [16]. Then came the Portuguese influence from
the colonial occupation, followed by Chinese and Indian music from the immigrants
of those countries [14]. Decades of rich political and cultural history of Singapore has
established the current tastes and genres of music in Singapore [10]. In this paper, we
create a dataset of music fragments of the three largest ethnical influences in Singapore,
namely, Chinese, Malay, and Indian. This allows us to develop machine learning models
that can estimate the probability of a song belonging to a certain ethnical group. In
future research, these newly developed models will be useful to analyse typical Singa-
porean songs such as the National Day Songs.

Over the last decade, significant strides have been made regarding audio classifi-
cation models for mood/emotion 11, |4] [13], genre [15] 6], hit prediction [9] and other
topics. Most related to this research is the work on folk tune classification [5| 3]. Here,
we focus on contemporary music from different Asian ethnical groups.

In the next section, we will discuss the dataset that we have gathered, followed by
the extracted features and developed classification models in Section 3. The perfor-
mance of our classifiers is presented in Section 4 and the final conclusion is presented
in Section 5.
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2 Dataset creation

We used the Spotify AP]E| to retrieve a list of songs for each of our ethnical groups.
The songs were manually curated by the first author, using search terms in the Spotify
API. General search terms like ‘Hindi songs’, ‘Chinese songs’, ‘Malay songs’ and ‘Tamil
songs’ were used, as well as names of popular singers of that specific ethnical group.
A total of 15,725 songs were downloaded using the API, of which 3,146 were Chinese
songs, 507 Malay songs, 6,729 Hindi songs, and 5,343 Tamil songs. We downloaded
the first 30 seconds of the selected songs, some of which are instrumental songs, some
contain only vocals, and some are a mix of both. Of these songs, a total of 260 low-level
features and 98 high-level features were extracted using Essentia [2] and OpenSMILE
|7] respectively. For high-level features, six of the features were categorical features, so
those features were one hot encoded, which increased the feature space to a total of
127 features. For low-level features, temporal data was collected in 0.5 seconds frames,
totalling 58 frames per song. These features were averaged for each song. A
detailed description of the features and the dataset itself is available online E|

Given the large number of extracted features, we do a preliminary exploration of
which feature subset is most efficient in the next section.

3 Classification models

There exist many types of classification algorithms that have shown to be effective
for audio classification tasks. It is not the intention of this investigation to develop
novel architectures or implement complex neural network structures. Instead, we focus
on a very influential factor: input features. As per [1], features greatly influence the
performance of models. In this research, we hence focus on comparing different input
representations (both high and low level music features) in basic, fast, and efficient
machine learning models that have proven their efficacy in audio classification: logistic
regression, k-nearest neighbours (k-NN), support vector machines (SVM) (with Grid
search), and random forest.

The dataset was split into a training and test set with a ratio of 80:20. These models
were tested using different feature subsets. These subsets can contain different types
of features, and might include a feature selection mechanism, as described in Table
This analysis reveals the most effective features for ethnical origin classification on our
new dataset.

Two feature selection methods were implemented: 1) A one-way ANOVA test is
used to perform the filter method [8] where the the p-value is calculated for each fea-
ture. Features with a p-value of less than 0.05 are taken into consideration for further
analysis. 2) The other technique is the wrapper method [12], where backward elimi-
nation was performed by taking subsets of the features to create models using logistic
regression. The accuracy of this model was examined and, using an iterative procedure,
features were removed. The feature selection process will be stopped when the classifier
delivers the best performance.

3 https://developer.spotify.com/
4 http://dorienherremans.com/sgmusic

Preprint accepted to the 13th International Workshop on Music and Machine
Learning as part of ECML-PKDD 2020

Proceedings MML 2020 = ECML/PKDD 2020 = 18.9.2020

67


https://developer.spotify.com/
http://dorienherremans.com/sgmusic

4 Experiments and results

We set up a preliminary experiment to analyse the influence of different feature repre-
sentations on the classifier performance. We explored different combinations of high /low
level features, with or without feature selection, thus forming Subsets of our data. We
should note that these subsets are imbalanced, hence we include the class weighted
AUC in the results in Table [l

Table 1. Subset description and model results

Subset No of features Feature type Feature selection method Best Model AUC Accuracy

1 260 low-level NA SVM 0.94 0.79
2 127 high-level NA RF 0.88 0.70
3 387 high & low NA SVM 0.94 0.79
4 1,820 low-level NA SVM 0.93 0.77
5 111 low-level wrapper SVM 0.94 0.80
6 82 high-level wrapper RF 0.88 0.70
7 182 low-level filter SVM 0.95 0.81
8 67 high-level filter RF 0.88 0.69
9 92 low-level filter+wrapper SVM 0.95 0.81
10 49 high-level filter+wrapper RF 0.86 0.69
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Fig. 1. Confusion matrices of two best performing models; left: Subset 9; right: Subset 7.
Label 0 is Chinese; 1 is Malay; 2 is Hindi; 3 is Tamil.

The SVM models using Subset 7 and 9 yielded the best AUC score of 95% and an
accuracy of 81% on the test data. Both of these subsets contain only low-level features,
and were reduced using feature selection methods. The confusion matrices in Fig. [I]also
reveal a very similar performance of these two models. When comparing these two best
performing models, we can conclude that Subset 9 is the more desired representation,
because it contains less features, and as a result the training time is faster.
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5 Conclusions and future work

We have gathered a dataset of 30s musical fragments together with 98 high and 260
low level musical features from four different ethnical origins. We have used this data
to train relatively well performing classification algorithms. In an experiment, these
classifiers perform best when using low-level audio features with feature selection as
the input. In future research, we aim to further expand and visualise the songs of our
dataset and make the models more robust, after which we can use them to explore the
ethnical origin/influence of typical Singaporean music such as the National Day Songs.
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Abstract. In this paper we present a method for detecting music beats
from a stream of onsets. Onsets are represented as a time-frequency
piano-roll like matrix, that are grouped into frequency bands. To estimate
the beats from the onset streams, we utilize a Long Short Term Memory
Neural Network, which has been used successfully in tracking the beats
from audio. The LSTM takes as input the onset streams and learns
a beat activation function, from which the beats are extracted using
an HMM-based post processing method. The proposed architecture is
trained and evaluated on a classical MIDI collection and an audio dataset
that contain both onset and beat annotations, achieving a good beat
tracking accuracy.

Keywords: Beat Tracking - Onset Streams - LSTM Networks.

1 Introduction

Automatic estimation of beats is an important task in the Music Information Re-
trieval (MIR) domain. Early beat tracking methods (late 90’s, 00’s) were focused
on both audio and MIDI input. MIDI files were popular and many researchers
chose to use MIDI as the basic representation of the music signals.For example
in [14] a probabilistic model for handling MIDI events in an online form is pro-
posed. Dixon [3] presented Beat Root, a method incorporating a probabilistic
model for extracting the beats from audio which implements an explicit onset
detection step followed by Inter-Onset-Interval (IOI) analysis that makes it ca-
pable to be applied to MIDI streams. Raphael [12] proposes a probabilistic model
for extracting beats by a "rhythmic parsing” of sequences of times. Similarly,
Goto [5] proposed a method for handling audio signals. Similarly to Beat Root,
it computes discrete onset times from an onset salience function computed on
seven frequency bands as a feature extraction step. Hainsworth and Macleod [7]
introduced particle filtering on onset times to estimate the beats of an onset
stream. In [15] the authors proposed adaptive oscillators in MIDI signals, while
in [13] a beat tracker in the context of performer-sequencer synchronization. A
more recent work dealing with MIDI can be found in [6], where a beat tracking
method in the context of performance MIDI files is presented.

As the years were passing, MIDI-based rhythm analysis systems were gradu-
ally disappearing, and more methods that were dealing directly with audio were
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proposed. Currently, the state-of-the-art on beat tracking consists of deep learn-
ing methods acting on audio files as in [1,9,4, 11] In contrast to the majority of
the literature, this paper deals with the extraction of beats from onsets, using
a Long Short Term Memory LSTM network. This choice is justified by the fact
that LSTMs have been successful for both onset and beat estimation tasks. Our
main contribution is the revision of a problem that has lost attention over the
last years despite its importance, and we provide a robust solution based on
modern deep based neural architectures.

2 Method Description

Figure 1 illustrates an overview of the proposed method. Onset times which can
be either derived my a MIDI file or automatically computed from audio along
with the pitch (MIDI number) are represented in a piano-roll binary sparse ma-
trix X [n, k] which is one if there is an onset at time step n and frequency that cor-
responds to MIDI number k. X is processed by a square filterbank F' of M bands
and the output B[n, m] represents the number of onset events in time n for the fil-
terbank band m. At next, the onset features B are fed to an bi-directional LSTM
network for depth L and size K in a sequence-to-sequence learning schema, that
outputs a two-dimensional Beat Activation Function (BAF) over time Oln, 2] in-
dicating the probability that a time instant being a beat/non-breat. Finally, the
output of the LSTM network is processed by an HMM-based system to extract
an optimal beat sequence from the BAF as proposed in [8].

Onsets Beat positions

I — (s )= )= =] [1]

Fig. 1. Overview of the proposed method.

3 Method Evaluation

The main difficulty in evaluating the proposed method is that there are not pub-
licly available algorithms and datasets making it impossible to reproduce their
results or to compare with them. To provide an evaluation as fair and as trans-
parent as possible, we will report results of the proposed method together with
the best performing state-of-the-art algorithm that was presented recently in
[11]. There results are not directly comparable, since [11] is audio-based method
trained on different datasets, but can provide an sketch of the potential of the
proposed method.
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Table 1. Overall results of the proposed method with comparison to best beat tracking
method

Proposed Method Madmom [11]
Dataset] I [CML.CML JAMLJAML; [ F_[CML [CML,JAML,[AML,
KDF 69.22| 34.34 | 42.7 | 53.17 | 66.14 || 58.1 | 32.47 | 40.23 | 49.13 | 60.73
MNet 53.0| 14.1 | 21.4 | 32.6 | 48.4(|50.78] 19.7 |27.67|33.16 | 47.74
4x22 49.7| 2.1 | 144 | 8.9 29.9(/52.22| 3.43 | 7.87 | 13.14 | 47.63

We consider three datasets, containing mainly classical music and can be con-
sidered as difficult datasets, namely Kunst der Fug that contains 12141 MIDI
files from classical composers, MusicNet as presented in [16] that is a collection
of 330 classical music recordings annotated with onset times and frequencies and
Vienna 4x22 Corpus|16] that contains audio with accurate aligned MIDI of
performances of 22 professional pianists for four solo piano pieces. For evaluation
we use the the standard F-measure together with the continuity based measures
CML., CML;, AML, and AML; [2]. Onset feature representation is computed
on frame a rate of 100 f/s. After experimentation we chose L and size K for the
network depth and size and the network was trained following a 8-fold cross vali-
dation strategy and by minimizing the Binary Cross Entropy with the Stochastic
Gradient Descent with a 0.9 momentum and with an adjustable learning rate
with warm restarts [10]. We applied Lo weight penalization a batch size of 1.

Table 1 presents the performance of the proposed method compared to the
CNN-based beat tracking method [11] that gives an overview of how the state-of-
the-art performs on these datasets. Here has to be mentioned that these datasets
have not been used in the past for beat tracking. For evaluating [11] on the
KDF dataset, all MIDI files were synthesized with the TiMidity++4' software.
To ensure fairness of the comparison we compared the performance of [11] on
both synthesized MIDI and audio files for the MusicNet and 4x22 datasets and
observed no significant differences on the performance.

Overall results indicate that the proposed method achieves results compara-
ble or even better compared to the baseline state-of-the-art method and demon-
strate the strong relation between beat positions and onsets. Regarding the KDF
dataset the proposed method achieves a good performance of more than 69%
based on the F-measure and 66% based on the AMLt measure. A relatively good
performance is achieved also on the MusiNet dataset. For the 4x22 Vienna Cor-
pus the performance is poor, but this can justified by the fact that we used a
one-piece-out cross validation approach (4 pieces on the whole dataset).

4 Conclusion

In this paper we proposed the revision of a problem that has lost attention over
the last years despite its importance and we presented a method for extracting
the beat from onset streams. Evaluation results indicate that the onset times are

! http://timidity.sourceforge.net/
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a dense and rich source of information which can be potentially used to train
a model that determines the beats faster and more robustly than using audio.
Moreover we provided an experimental protocol that can provided insights of
the performance of the proposed method in the absence of other reproducible
methods or open datasets for this task. Without being valid to compare directly
to audio based state-of-the-art methods, results indicate that there is a lot of
potential to continue work in this direction.

References

10.

11.

12.

13.

14.

15.

16.

Bock, S., Krebs, F., Widmer, G.: A multi-model approach to beat tracking consid-
ering heterogeneous music styles. Citeseer

. Davies, M.E., Degara, N., Plumbley, M.D.: Evaluation methods for musical audio

beat tracking algorithms. Queen Mary University of London, Centre for Digital
Music, Tech. Rep. C4ADM-TR-09-06 (2009)

Dixon, S.: Evaluation of the audio beat tracking system beatroot. Journal of New
Music Research 36(1), 39-50 (2007)

Gkiokas, A., Katsouros, V.: Convolutional neural networks for real-time beat track-
ing: A dancing robot application. In: ISMIR. pp. 286293 (2017)

Goto, M.: An audio-based real-time beat tracking system for music with or without
drum-sounds. Journal of New Music Research 30(2), 159-171 (2001)

Grohganz, H., Clausen, M., Miiller, M.: Estimating musical time information from
performed midi files. In: ISMIR. pp. 35-40 (2014)

Hainsworth, S.W., Macleod, M.D.: Particle filtering applied to musical tempo
tracking. EURASIP Journal on Advances in Signal Processing 2004(15), 927847
(2004)

Korzeniowski, F., Bock, S., Widmer, G.: Probabilistic extraction of beat positions
from a beat activation function.

Krebs, F., Bock, S., Widmer, G.: An efficient state-space model for joint tempo
and meter tracking.

Loshchilov, 1., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

MatthewDavies, E., Bock, S.: Temporal convolutional networks for musical audio
beat tracking. In: 2019 27th European Signal Processing Conference (EUSIPCO).
pp. 1-5. IEEE (2019)

Raphael, C.: Automated rhythm transcription. In: ISMIR. vol. 2001, pp. 99-107
(2001)

Robertson, A., Plumbley, M.: B-keeper: A beat-tracker for live performance. In:
Proceedings of the 7th international conference on New interfaces for musical ex-
pression. pp. 234-237 (2007)

Rosenthal, D.; Goto, M., Muraoka, Y.: Rhythm tracking using multiple hypothe-
ses. In: Proceedings of the International Computer Music Conference. pp. 85-85.
Citeseer (1994)

Sethares, W.A., Arora, R.: Equilibria of adaptive wavetable oscillators with ap-
plications to beat tracking. In: 2007 IEEE International Conference on Acoustics,
Speech and Signal Processing-ICASSP’07. vol. 4, pp. IV-1301. IEEE (2007)
Thickstun, J., Harchaoui, Z., Kakade, S.: Learning features of music from scratch.
arXiv preprint arXiv:1611.09827 (2016)

Proceedings MML 2020 = ECML/PKDD 2020 = 18.9.2020

73



